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ABSTRACT 

Interspecific hybridization is widespread in nature, where it can lead to 
either the production of new species or to the introgression of useful 
adaptive traits between species. In agricultural systems, there is also 
great potential to take advantage of this process for targeted crop 
improvement. In the Brassica genus, several crop species share close 
relationships: rapeseed (Brassica napus) is an ancestral hybrid between 
turnip (B. rapa) and cabbage (B. oleracea), and mustard species B. juncea, 
B. carinata and B. nigra share genomes in common. This close 
relationship, plus the abundance of wild relatives and minor crop species 
in the wider Brassiceae tribe which readily hybridize with the Brassica 
crop species, makes this genus an interesting example of the use of 
interspecific hybridization for crop improvement. In this review we 
introduce the Brassica crop species and their wild relatives, barriers to 
interspecific and intergeneric hybridization and methods to overcome 
them, summarize previous successful and unsuccessful attempts at the 
use of interspecific hybridization for crop improvement in Brassica, and 
provide information about resources available to breeders wishing to 
take advantage of this method in the Brassica genus. 

KEYWORDS: Brassica; interspecific hybridization; crop improvement; 
crop wild relatives; genetic diversity 

INTRODUCING THE BRASSICA CROP SPECIES AND THEIR WILD 
RELATIVES  

The Brassica genus belongs to the tribe Brassiceae (family 
Brassicaceae). This family comprises 338 genera (assigned to 25 tribes) 
and 3709 species [1,2]. The members of this family are mostly herbs with 
annual, biennial or perennial growth habits [3]. Initially this family was 
known as “Cruciferae” due to its characteristic flower conformation of 
four petals arranged in a cross-shape [3]. Most of the member species are 
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distributed in temperate regions, with the first center of diversification 
located in the Irano-Turranian region (~150 genera and ~900 species), 
followed by a second center of diversification in the Mediterranean 
region (>110 genera and ~630 species)[3]. 

Brassica is the most prominent genus in the Brassicaceae family and 
includes 39 species [1]. Many of the species in this genus are cultivated 
for their edible roots, leaves, stems, buds, flowers, mustard and oilseeds 
[4]. For 33 of the species the chromosome number has been determined, 
and ranges from n = 7 up to n = 20 [5]. During the 1930s, the chromosome 
number and genetic relationships between the cultivated Brassica 
species was established [6,7]. The diploid species B. rapa (AA, n = 10),  
B. nigra (BB, n = 8) and B. oleracea (CC, n = 9) were determined to be the 
progenitors of the allopolyploid species B. juncea (AABB, n = 18), B. napus 
(AACC, n = 19), and B. carinata (BBCC, n = 17), in a relationship known as 
“U’s Triangle” [7]. Based on chloroplast DNA data it was determined that 
B. nigra belongs to a different lineage (Nigra lineage) than B. rapa and  
B. oleracea (Rapa/Oleracea lineage)[8], with the two lineages diverging 
approximately 7.9 Mya [9]. The divergence between B. rapa and  
B. oleracea has been estimated to have occurred perhaps 3.75 Mya [10] to 
about 5 Mya [11]. Later on, approximately 7500 years ago or less, diploid 
species B. rapa and B. oleracea hybridized to produce B. napus L. [12].  

Genetic diversity within Brassica species has been broadly studied, 
with a special focus on the six crop species that form the U’s triangle.  
Of these species, three are highly diverse: B. oleracea, B. rapa and  
B. juncea [13,14]. These species are quite morphologically variable, 
presenting different leaf types, numbers of branches per stem, 
inflorescence types, and stem thicknesses; these variations also lead to 
different end-product usage (e.g., oil or vegetable type)[13]. Genetic 
diversity observed in the Brassica allopolyploids can be due to  
(i) multiple hybridization events with diverse parents (or possibly 
subsequent backcrossing of the newly formed allotetraploids to  
the parent species) and (ii) genome changes occurring after 
polyploidization [15]. Four Brassica species are mainly used as oilseed 
crops: B. juncea, B. rapa, B. carinata and B. napus [16].  

THE U’S TRIANGLE SPECIES AS CROPS: USES AND GENETIC 
DIVERSITY 

Brassica napus (rapeseed, oilseed rape, swede) is the most 
economically important of the Brassica crop species, occupying the third 
position worldwide in the oil vegetable market, after soybean and palm 
oil. In the year 2016, worldwide production of rapeseed was over 68 
million tons (Mt) (www.fao.org/faostat/, November 2018): In Germany, a 
large proportion of the rapeseed oil produced is used to generate 
biodiesel (2017: 4 Mt of biodiesel produced, source: European Biodiesel 
Board). Rapeseed, as well as other members of the Brassicaceae, naturally 
contain 20–40% erucic acid [17] and high glucosinolates in the seed meal. 
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However, rapeseed has been extensively bred for low erucic acid and low 
glucosinolates [18] to produce a type of rapeseed better known as canola. 
The main producers of rapeseed are Canada, China and India, which 
together represent almost 60% of the total production worldwide 
(www.fao.org/faostat/, November 2018). Winter-type rapeseed is mainly 
grown in Europe, and spring types are mostly grown in Canada, China 
and Australia [19]. Brassica napus (AACC, 2n = 4x = 38) is thought to have 
originated in the last 7500 years via at least two different hybridization 
events between B. oleracea and B. rapa in agricultural systems [12]. 
Unfortunately, most of the genetic variation in oilseed rape has been 
reduced due to intensive selection for low erucic acid and low 
glucosinolate content traits [20]. Rapeseed is not found in nature as a wild 
type, and most of the diversity existing nowadays comes from breeding 
programs or cultivars from different countries [21].  

Brassica juncea (AABB, 2n = 4x = 36) is also used as a vegetable, with 
leaf mustard or Indian mustard as the common name [19]. A huge 
diversity of leaf morphotypes is present in this species that is thought to 
have been influenced by human selection [13], with two representative 
gene pools: East Europe and Indian [22]. Mustard is mainly grown in 
India due to climate conditions, where the breeding objectives are mainly 
focused on improving seed yield [16]. Although genetic resources 
available for B. juncea are not as comprehensive as those available for  
B. napus and its progenitor species, a reference B. juncea genome was 
published in the year 2016 [23].  

Brassica rapa (AA, 2n = 2x = 20), initially named B. campestris and 
commonly known as turnip or Chinese cabbage, has its origins in the 
Mediterranean and Central Asia [14]. The different subspecies of B. rapa 
can be used as a fodder (e.g., subsp. rapifera), vegetables (e.g., subsp. 
chinensis or pekinensis), or as an oilseed crop (e.g., subsp. oleifera)[14]. 
Brassica rapa, Chinese cabbage accession Chiifu-401-42, was the first 
Brassica species to get its genome sequenced [24]. Of the estimated 
genome size of 485 Mb, 283.8 Mb was initially assembled [24]. Later on, 
an improved assembly was released (v2.0) that increased the size of the 
genome assembly to 389.2 Mb [25]. The B. rapa genome is rich in 
transposable elements, accounting for 32.3% (~54 Mb) of the assembled 
sequence [25], much more than the 10.0% observed in the related 
genome of Arabidopsis thaliana [26].  

Brassica oleracea (CC, 2n = 2x = 18) is mainly used as an edible 
vegetable. This species is composed of several varieties and morphotypes 
are usually referred to as coles. These vegetables are rich in vitamin C, 
folate and calcium [27]. Different varieties include Brussels sprouts (var. 
gemmifera), cabbage (var. capitata), cauliflower (var. botrytis), and 
Chinese kale (var. alboglabra)[27]. In the year 2016, the worldwide 
production of cauliflower and broccoli surpassed 25 million tons 
(www.fao.org/faostat/, November 2018). Some new vegetables have also 
been produced by crossing different varieties within this genus, such as 
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broccolini [27]. Two draft genome references for B. oleracea were 
published in 2014 [28,29]. 

Brassica carinata (BBCC, 2n = 4x = 34), also called Ethiopian mustard, 
possesses wide genetic variability and is also used as an oilseed crop [30]. 
This crop has also been considered for use in biodiesel production [31] 
and for other purposes including as a condiment, medicine and  
vegetable [19].  

Brassica nigra (BB, 2n = 2x = 16) was previously used as a condiment 
mustard but has now been mostly replaced by B. juncea [19]. Compared 
to the major Brassica crops, B. nigra contains little variety in physical 
appearance [13], but it nevertheless possesses different agronomical 
traits of great value such as resistance to Phoma lingam [32]. Although  
B. nigra is the least agriculturally significant of the six Brassica crop 
species, a scaffolded genome assembly (not yet assembled into 
pseudomolecules) was made available in 2016 alongside the B. juncea 
genome [23], and a new chromosome-level assembly was released in 
2019 [33]. 

THE BRASSICA WILD RELATIVES: COENOSPECIES AND CYTODEMES 

In the 1970s, Harberd defined the term “coenospecies” for those 
species or genera that have sufficient relatedness to the six Brassica crops 
to be able to exchange genetic material with them [34,35]. The 
coenospecies are composed of almost 100 wild species and genera that 
can potentially be used to increase diversity, and to introgress useful 
traits such as disease resistance or abiotic stress [36]. Harberd also 
classified the Brassica coenospecies into biological units called 
“cytodemes” [34,35,37]. Each cytodeme can contain more than one genus 
or species, but all species within a cytodeme should have the same 
chromosome number, and readily cross with other species in the same 
cytodeme to produce fertile, vigorous hybrids. Based on these criteria, the 
Brassica coenospecies were initially classified into 38 cytodemes [35], 
covering nine genera from the subtribe Brassiceae (Brassica, Coincya, 
Diplotaxis, Eruca, Erucastrum, Hirschfeldia, Sinapis, Sinapidendron, and 
Trachystoma) and two genera from subtribe Raphaninae (Enarthrocarpus 
and Raphanus). This was later updated to 63 [38], after the addition of 
three genera (Moricandia, Pseuderucaria, and Rytidocarpus) from the 
related subtribe Moricandiinae [39]. The crossability between cytodemes 
is low, but certain tools can be used to increase success rates (as 
discussed in later sections of this review). Crossability can also be 
influenced by the direction of the cross, i.e., which species is used as the 
maternal parent, which is referred to as “unilateral incompatibility” [40].  

An extended list of potentially useful agronomic traits for crop 
improvement present in wild allies of the Brassica species can be found 
in [41]. Examples include resistance to white rust (Albugo candida) in 
Brassica maurorum [42] and Eruca versicaria ssp. sativa [43], resistance 
to Alternaria blight in Brassica fruticulosa [44] and Trachystoma ballii 
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[45], resistance to beet cyst nematode in Raphanus sativus [46] and 
Sinapis alba [47], and resistance to blackleg/Phoma disease 
(Leptosphaeria maculans) in Sinapis arvensis [48], Sinapis alba [49], 
Thlaspi arvense [50], and B. tournefortii [51]. The Brassica crop species 
also contain unique, useful traits: examples include resistance to 
powdery mildew (Hyaloperonospora parasitica) in Brassica oleracea [52], 
resistance to clubroot disease (Plasmodiophora brassicae) in B. rapa,  
B. oleracea and B. napus [53], and pod shatter resistance and tolerance to 
heavy metals in B. juncea [54]. More exotic traits of interest include a  
C3–C4 intermediate photosynthetic system in Moricandia [55] and 
Diplotaxis species [56,57], and high erucic acid levels in Crambe 
abyssinica [58]. Cytoplasmic male sterility in Brassica could also  
be conferred by hybridization with Sinapis incana [59] and Diplotaxis 
siifolia [60], among other examples. 

HYBRIDIZATION BETWEEN BRASSICA SPECIES AND WILD 
RELATIVES 

Direct wide hybridization has been attempted many times between 
Brassica and various wild relative species, with different levels of success 
(reviewed in [61]). Originally such hybrids were produced to resolve 
chromosome homoeology (phylogenetic relationships) or simply out of 
curiosity [62]. However, crossing with distant relatives is today attracting 
increasing recognition as a method with which to improve agronomic 
traits in high-end varieties. There are many examples of the successful 
introgression of new traits into Brassica crops. Initial attempts to create 
hybrids between Brassica species started in the early 1800s. At this time, 
some crosses were made between B. napus × B. rapa and B. oleracea ×  
B. rapa. Different success rates were reported and the results were 
published in 1925 by [63]. Later on, a compilation of crossability between 
species in the Brassica, Raphanus and Sinapis genera was published, 
showing that interspecific hybrids can be made between the Brassica 
crops and many closely-related wild species [61]. 

The occurrence of natural hybridization between distant relatives in 
natural conditions is low. For instance, [64] found that hybridization 
between Brassica napus, B. rapa and B. juncea and their two weedy 
relatives B. nigra and Sinapis arvensis does not occur under open 
pollination conditions in the field, although B. rapa, B. juncea and  
B. napus all readily produce hybrid progeny with each other under the 
same conditions. The cross between B. napus (2n = 38) and Raphanus 
raphanistrum (2n = 18)[65] has also been assessed under field conditions. 
In this case, just two allopolyploid hybrids (2n = 56) were obtained from 
more than 52 million B. napus seedlings when this species was used as a 
female, showing a hybridization frequency of 4 × 10−8 in field conditions. 
These results indicate that the likelihood of this cross in the wild is low, 
which shows the importance of conducting such hybridizations under 
controlled conditions. 
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TRANSFER OF USEFUL TRAITS INTO BRASSICA CROP SPECIES 
THROUGH INTROGRESSION BREEDING 

Disease Resistance 

The introgression of genes for disease resistance between species has 
been widely studied in Brassica. One example is the utilization of the B 
genome as a source of resistance against Leptosphaeria maculans 
(blackleg) from diploid and tetraploid species. For instance, chromosome 
B4 from B. nigra was introgressed into rapeseed variety “Darmor”, which 
showed high resistance with the addition of this chromosome [66]. 
Similarly, high resistance from B. juncea was obtained in selected 
recombinant lines of B. napus carrying a resistance gene located on 
chromosome B8 [67]. A similar study [68] successfully introgressed a 
B-genome chromosome from B. carinata to B. napus, with plants carrying 
this chromosome showing variation in traits such as blackleg resistance, 
days to flowering, days of maturity, and fatty acid composition. Another 
example is the improvement of resistance against Erysiphe polygoni 
(which can cause powdery mildew disease). Resistance in 100% of BC1 
progeny was successfully demonstrated in hybrids obtained by hand 
crossing and embryo rescue between B. carinata (donor) × B. oleracea 
[69]. Other cases of resistance transfer include transfer of blackrot 
resistance from B. carinata to B. oleracea [70], resistance to Brassica leaf 
blight caused by Alternaria brassicae from B. hirta to B. juncea [71] and 
transfer of powdery mildew resistance from B. carinata to B. oleracea 
through embryo rescue followed by backcrossing to B. oleracea [69].  

Yellow Seededness 

Yellow seededness is a desirable trait in Brassica, as yellow seeds have 
less fiber, higher protein, and higher oil content than black seeds. 
Although B. juncea and B. rapa contain yellow-seeded traits, this trait is 
not found in rapeseed (B. napus). Using monosomic alien addition lines 
from the cross B. rapa × B. oleracea, Heneen et al. [72] found that seven of 
the nine C chromosomes carry genes that affect seed color, showing the 
complexity of this phenotype. Interspecific crosses between B. alboglabra, 
B. rapa var. “yellow sarson”, yellow seeded B. carinata and black seeded 
B. napus have been carried out previously to attempt to produce 
yellow-seeded B. napus, with interspecific hybrid progeny showing 
different degrees of seed colour [73]. However, this study demonstrated 
that the combination of the C genome of yellow-seeded B. carinata with 
the A genome of “yellow sarson” does not result in a yellow-seeded  
B. napus. The expression of this trait also appears to be heavily affected 
by the environment. Rashid et al. [74] crossed [(B. napus × B. juncea) × B. 
napus] × [(B. napus × B. carinata) × B. napus] and successfully obtained 
yellow seeds. However, when these plants were tested in the field the 
color was found to be highly affected by temperature [75]. 
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Male Sterility 

A common use of wild relatives for Brassica crop improvement is  
in the production of male sterile lines to facilitate hybrid production. 
Male sterility is often conferred when cytoplasm from an alien species is 
present in the genetic background of another species: this is referred to 
as cytoplasmic male sterility, or CMS. The most successful example of this 
approach in Brassica is the Ogura CMS system, where alien cytoplasm 
was obtained from crossing Brassica napus to Japanese radish (Raphanus 
sativus)[76]. This system was subsequently widely used in B. napus,  
B. juncea and B. oleracea [77]. Several other CMS systems have also been 
successfully developed from interspecific hybridization events, including 
a novel CMS system in B. juncea incorporating the cytoplasm of  
B. fruticulosa [78], and the Nsa CMS system in B. napus utilizing Sinapis 
arvensis cytoplasm [79]. On the other hand, several attempts to produce 
additional CMS lines through interspecific hybridization have also been 
unsuccessful. Seventeen crosses between Diplotaxis species and B. napus 
were done in order to introgress CMS, but out of hundreds of crossings 
using conventional techniques only crosses with D. muralis and D. erucoides 
were successful, and no CMS system was consequently established [80]. 
Protoplast fusion has been used to transfer Ogu cytoplasmic male sterility 
factor from Brassica napus to Brassica juncea and for the improvement of 
male sterile lines in hybrid breeding systems [81]. Somatic hybridization 
between B. juncea and B. oleracea has also been used to transfer 
cytoplasmic male sterility and resistance to Turnip mosaic virus from  
B. oleracea to B. juncea [82,83]. Prakash et al. [84] successfully obtained 
both stable CMS B. juncea and an introgression line carrying the restorer 
gene via somatic hybridization between M. arvensis and B. juncea 
followed by backcrossing with B. juncea.  

Oil Quality Traits 

Interestingly, oil quality traits have also been successfully transferred 
between species for crop improvement in Brassica. In the case of 
rapeseed, low erucic acid and low glucosinolate content originate from 
two B. napus cultivars: “Liho” with low erucic acid and “Bronowski” with 
low glucosinolate content [20]. Another possible source of these oil 
quality traits is Capsella bursa-pastoris, which can show less than 1% 
erucic acid and less than 16 µmol/g of glucosinolates in the seeds, as well 
as high resistance to Sclerotinia sclerotiorum [85]. Previously, several 
chromosomes and chromosomal fragments from C. bursa-pastoris were 
successfully introgressed into B. napus and B. rapa [85]. Another wild 
relative with favorable fatty acid content is Orychophragmus violaceus, 
which has been successfully crossed with B. napus [86,87]. From this 
cross, advanced progenies with 2n = 38 chromosomes, ≥70% oleic acid,  
28% linoleic acid and low glucosinolate content in the seeds (<30 µmol/g 
oil free meal) were produced [87]. 
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Other Traits of Agronomic Interest 

Moricandia arvensis is a plant that expresses an intermediate C3–C4 
photosynthetic mechanism [88]. This trait was introgressed into B. napus 
by somatic hybridization by [89], who obtained three hybrid plants that 
expressed C3–C4 intermediate photosynthesis characteristics. Dwarfism is 
a useful agronomic characteristic which helps avoid lodging, and which 
was introgressed by [90] from a mutant B. rapa into natural B. napus via 
production of a resynthesized B. napus from the mutant B. rapa with a 
normal B. oleracea, followed by four generations of backcrossing with 
natural B. napus. Pod shatter resistance has also been introgressed into B. 
napus from B. juncea via direct hybridization [91]. Finally, drought 
tolerance has been introgressed from Sinapis alba into B. napus by 
somatic hybridization, and was identified at the vegetative stage in the 
BC3F1 vegetation, although the original target was yellow-seededness [92]. 

RESYNTHESIS OF BRASSICA ALLOTETRAPLOID CROP SPECIES 

Interspecific hybridization has two major outcomes: introgression and 
speciation. While introgression transfers just a limited number of alleles, 
hybrid speciation produces a new hybrid species. Resynthesis is the 
process of reproducing an already existing species from its progenitor 
species. This is most often done to increase the genetic diversity of the 
existing allotetraploid species by incorporating some of the greater 
genetic diversity of the progenitor species. Resynthesis as a tool of crop 
improvement has many benefits. Polyploidy induced during the process 
of resynthesis can overcome crossing barriers due to endosperm failure 
in interploidy crosses [93]. The genetic diversity of some Brassica 
allotetraploid crops is limited due to the few hybridization events that 
gave rise to these species [12]. In the case of B. napus, geographic isolation, 
extensive breeding and selection for low erucic acid and glucosinolate 
content has further eroded the genetic diversity of this species [37,94]. 
Resynthesizing the Brassica allotetraploids from their diploid parents is a 
means of increasing the genetic diversity of these species. Studies of this 
method abound: Seyis et al. [95] resynthesized 165 Brassica napus lines 
by crossing B. rapa and B. oleracea progenitor species; analysis of these 
resynthesized lines using RFLP markers showed they were highly 
genetically divergent from established oilseed rape cultivars, and also 
showed a high degree of morphological diversity. Abel et al. [96] also 
developed resynthesized Brassica napus to study fixed heterosis by 
crossing 21 B. rapa and 16 B. oleracea species, and showed that the 
direction of the cross affects hybridization outcome, although the 
diversity of this population and its effect on fixed heterosis was not 
reported in this study. Several other studies have also reported on 
resynthesis of B. napus in order to expand the available gene  
pool [97–100], and to test for new traits such as resistance to cabbage 
stem weevil Ceutorhnchus pallidactylus [101]. Brassica juncea has also 
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been resynthesized by crossing its progenitor species B. rapa and B. nigra 
to broaden the genetic base of this species [102–104]. Bansal et al. [105] 
resynthesized new B. juncea genotypes, and found the resynthesized  
B. juncea to be morphologically diverse compared to natural B. juncea. 
Brassica carinata has also been resynthesized from its progenitor species, 
with hybrids showing morphological variation potentially useful for crop 
improvement [106,107]. 

These new synthetic polyploids are not usually being bred to become a 
new crop nor in competition with the elite varieties, but rather as a 
source of diverse new agronomic traits, where they are used to cross with 
and introgress these traits into high-performance cultivars [62]. One 
successful example is the synthetic clubroot-resistant allotetraploid  
B. napus RS 15/04, which was created by crossing a resistant kale  
(B. oleracea ECD-15) and turnip rape (B. rapa ECD-04). This synthetic  
B. napus was subsequently crossed with WOSR cv. “Falcon”, and a DH line 
created from the F1. This line was then backcrossed with cv. “Falcon” 
until the BC2F1 where three dominant genes specific to a particular race 
of the clubroot pathogen were present. Further breeding was done, and 
in 2001 the clubroot-resistant winter oilseed rape cv. “Mendel” was 
released [20]. Newly synthesized Brassica polyploids can also present 
extensive genome change at very early stages and also throughout 
further generations (F1–F5)[108]. This variation can also be 
phenotypically observed in traits like flowering time [109] and hybrid 
vigor in synthetic B. juncea [102], and may comprise a means of 
generating entirely new traits.  

NOVEL GENOME COMBINATIONS AND CROP TYPES  

Efforts on Brassica improvement through polyploid synthesis have not 
only been limited to the naturally occurring allotetraploids. Several 
attempts have been made to synthesize a new, fertile and meiotically 
stable allohexaploid Brassica (2n = AABBCC), with varying success rates 
that appear dependent on both genotype and method used (reviewed  
by [110]). Synthetic allohexaploids produced from crosses between  
B. carinata and B. rapa followed by chromosome doubling showed bigger 
flowers, high silique setting and high fertility, the latter increasing  
from the F2 to F4: this trend is expected to continue across generations, 
leading to a potentially stable species which could be of benefit to 
agriculture [111]. Other studies on allohexaploid Brassica have focused 
on using these hybrids as a bridge between species (reviewed by [94]), 
such as in the creation of novel Brassica napus genotypes exhibiting 
useful traits like yellow seededness via hybridization between B. rapa 
and B. carinata to produce 2n = AABBCC types followed by backcrossing 
to B. napus and elimination of the B genome [112–114]. 

The Raphanus genome has also been used to develop synthetic 
allotetraploids, as radicole (CCRR, 2n = 36)[115] or Raparadish 
(AARR, 2n = 38)[116]. Both of these hybrids feature a fodder-like crop 
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with the advantage of resistance to the beet cyst nematode. Although  
B. napus has some resistance to this nematode, transfer of this 
high-resistance trait from Raparadish to B. napus was attempted in  
1993 [117]. Surprisingly, there was no significant difference in the 
number of hybrids produced based on the B. napus cultivar or accession 
used in the crosses. In the F1 population (AACR, 2n = 38), nematode 
resistance was found to be intermediate between the two parental 
species. The meiosis observed in the F1 plants was also very variable, 
producing a high frequency of unbalanced and unreduced gametes. 

BARRIERS TO INTERSPECIFIC HYBRIDIZATION 

Near and far relatives of major crop species provide us with an 
enormous untapped reservoir of agriculturally important traits. 
Transferring this genetic variation to crops through introgression 
breeding has helped produce improved, high yielding crops resilient to 
prevailing climatic conditions [118]. The Brassica A, B and C genome 
species and other wild relatives contain valuable genetic variation for 
crop improvement, including genes or alleles for defense against pests 
and diseases [67,69] and drought tolerance [119,120]. Extensive 
interspecific and intergeneric hybridization has been performed between 
cultivated species, and between cultivated species and wild relatives, to 
develop more potentially useful cultivars with improved biotic and 
abiotic stress tolerances [61]. 

However, despite the potential of using hybridization to transfer 
useful traits from related crop species or wild relatives, there are barriers 
that limit the usefulness of this process. Interspecific and intergeneric 
hybridization barriers can be divided into two categories: 
pre-fertilization and post-fertilization barriers. Pre-fertilization barriers 
can arise due to failure of pollen germination, pollen tube growth or 
pollen tube penetration of the embryo [121,122]. Degradation or death of 
the hybrid embryo and male and female sterility in hybrid plants are 
some of the causes of post-hybridization barriers and hybrid  
sterility [123]. Fertilization in interspecific crosses can still occur, but 
later on can produce embryo abortion related to problems with 
endosperm development [124]. This often happens in one direction (i.e., 
when one species is used as the maternal parent, but not when it is used 
as the paternal parent) and it can be overcome when the reciprocal cross 
direction is tested [124]. This has been recorded, and some examples 
show more success when B. napus is used as a female in interspecific 
hybridization events [16]. Similarly, in some attempted crosses between  
B. carinata and B. rapa, F1 hybrids were only obtained when B. carinata 
was used as the female [125]. The challenge of creating interspecific 
hybrids increases as the phylogenetic distance between the combining 
species increases [126]. Opportunities for and success of interspecific 
crosses are also dependent on a number of other factors: physical 
distance between the species/parent plants, synchrony of flowering, the 
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specific parental genotypes used, the method of pollen dissemination, the 
direction of the cross (which parent is female), environmental factors, 
and whether one parent is male-sterile [127,128].  

In Brassica it is difficult to make a simple statement about 
reproductive compatibility and incompatibility, as reproductive 
compatibility relationships are complicated, with partial reproductive 
barriers between many species [61,127]. Despite years of research on 
hybridization in Brassica, the degree of reproductive compatibility 
between many species combinations remains untested. Detailed 
summaries of the extent of interspecific hybridization in Brassica have 
been reported by various sources [13,41,61]. Given that several factors 
need to be considered in creating successful interspecific hybrids, 
different methods have been developed to transfer useful traits between 
different Brassica species and to increase the genetic diversity of  
Brassica crops. 

METHODS TO FACILITATE INTERSPECIFIC HYBRIDIZATION AND 
THE TRANSFER OF TRAITS BETWEEN SPECIES 

Early and in Vitro Fertilization and Embryo Rescue 

Failure of foreign pollen to germinate on the stigma, to grow pollen 
tubes or to subsequently fertilize ovules, and for fertilized ovules to 
develop into seeds, are all commonly observed in interspecific 
hybridization attempts. However, a number of strategies exist to 
overcome these pre- and post-fertilization barriers (reviewed by [129]). 
Early pollination of stigmas (before buds open and before full maturity) 
or stump pollination can help in overcoming reproductive 
incompatibilities between some genotypes of Brassica species [130], 
while in other cases in vitro pollination of the stigma or pistils and/or 
opened ovules and ovaries may facilitate the interspecific fertilization 
event [131]. Seed abortion post-fertilization is also often observed in 
crosses between plants of different species or ploidy levels [132]. In cases 
where seeds cannot be obtained from crossing, a technique where the 
embryo is “rescued” from the putatively hostile maternal environment, 
usually into tissue culture or a sterile medium, can sometimes allow the 
production of hybrid plants. The technique of in vitro culture to rescue 
interspecific hybrid embryos was first used in crosses between Lolium 
perenne and L. austriacum [133]. Wide crosses between many crop plants 
and their wild relatives have now become possible through the use of 
embryo rescue techniques, as embryo rescue and subsequent culture  
in vitro helps to overcome post-fertilization barriers [70]. In the 
production of Brassica interspecific hybrids, embryo rescue is commonly 
used to overcome natural reproductive barriers [94,134]. Embryo rescue 
was first used in Brassica by [135]. Following this study, extensive 
investigations have been carried out to improve this method [136,137]. 
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The successful application of this technique depends on the 
developmental stage of the embryo being rescued [70]. 

Several studies have demonstrated the importance and success of this 
technique in transferring useful traits between Brassica species. Using 
embryo rescue, triazine resistance has been transferred from B. napus to 
B. oleracea [133]. Yao et al. [138] produced allohexaploids by crossing  
B. maurorum with all three Brassica allotetraploids. Herbicide resistance 
was transferred from Sinapis arvensis to B. juncea and B. rapa using 
embryo rescue [139]. Cytoplasmic male sterility has been transferred 
from B. juncea and B. napus to B. oleracea [140]. Zhang et al. [98] 
resynthesized B. napus from interspecific hybridization between B. rapa 
and B. oleracea, and new type B. napus types showing resistance to 
Verticillium longisporum were synthesized from a diverse set of B. rapa 
and B. oleracea through embryo rescue [141]. 

Somatic Fusion 

Somatic fusion is an important means of transferring useful traits 
from one species to another. Somatic fusion has the advantage that it can 
bypass these incompatibility barriers and transfer genes between 
sexually incompatible species [142]. Besides the transfer of agronomically 
important traits, protoplast fusion can be used to modify organellar traits, 
as chloroplasts and mitochondria from both parental species are 
combined with somatic fusion, rather than only the maternal cytoplasm 
being inherited by the interspecific hybrid as is the case for sexual 
crosses. Brassica species were among the first crops used for protoplast 
isolation, as most parts of the plant are suitable for releasing totipotent 
protoplasts [142,143]. Regeneration of plants from isolated protoplasts 
has been reported in all Brassica species following the first report of 
successful plant regeneration from B. napus mesophyll tissue [144]. 
Somatic hybridization has successfully been used to transfer traits such 
as disease resistance, oil quality, cold and drought tolerance and 
herbicide resistance between species [142,143]. In one example, somatic 
hybrids between B. rapa and B. oleracea were used to create improved  
B. rapa cultivars resistant to soft rot by backcrossing somatic hybrids to  
B. rapa [145]. Asymmetric somatic hybridization has also been used to 
transfer resistance to blackleg disease from B. juncea, B. rapa and  
B. carinata into B. napus [113].  

Genetic Transformation 

Genetic transformation can play an important role in variety 
improvement and functional analysis of Brassica crops. It has paved the 
way for the development of new Brassica varieties producing 
biodegradable plastics, pharmaceuticals and nutritive compounds by 
introducing new genes from unrelated sources [146]. Conventional 
breeding of Brassica is time consuming, labor and resource intensive. On 
the other hand, genetic transformation provides a direct means of 
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introducing specific genes or traits without negatively affecting the 
desirable genetic background [147]. In addition, certain important traits 
may not be available in the existing germplasm [148]. Under such 
circumstances, genetic transformation has shown to be a powerful means 
of effectively transferring genes across reproductive barriers [149].  

Genetic transformation systems have been developed in almost all the 
economically important Brassica species, including B. napus [150],  
B. oleracea [151], B. juncea [152], B. nigra [153], B. carinata, and B. rapa 
[154]. Different plant transformation methods exist. The direct method, 
where naked DNA is introduced into the protoplasts of intact cells, can be 
mediated by methods such as polyethylene glycol (PEG) treatment, 
microinjection and electroporation. Alternatively, indirect methods 
requiring an intermediate biological vector can be used; usually 
Agrobacterium tumefaciens transformation is suitable for this purpose in 
Brassica [149]. 

Genetic transformation has led to the introduction of new traits in to 
Brassica crops far beyond the species boundary: genes not present in the 
Brassica species. Traits improved through genetic transformation include 
resistance to herbicides such as glyphosate, glufosinate, sulfonylurea, 
bromoxynil, and bromoxynil resistance [155–157]. Oil quality 
improvement has also been a target of transformation. Brassica juncea 
and B. napus with high oleic acid have been produced by silencing the 
endogenous oleate desaturase [158]. Also, transformation of the 
d12-desaturase genes from the fungus Mortierella alpina has led to the 
production of canola with high gamma-linolenic acid [159].  

Insect and disease resistance have also been important target traits for 
improvement of Brassica crops. Brassica napus producing an endogenous 
endotoxin of Bacillus thuringiensis poisonous to the diamondback moth 
have been produced through transformation with the Bt cry1 gene [160,161]. 
Novel insect resistance in B. napus has also been developed by 
transformation of chitinase and scorpion genes [161]. Transformation 
has been used to convert Brassica crops to biofactories producing 
pharmaceutical and industrial products such as biodegradable  
polymers [162]; the anticoagulant protein hirudin has been produced in  
B. carinata [163]. 

The development of male sterile lines and restoration system has also 
been a significant advancement in Brassica transformation. Male sterile 
plants were obtained in B. juncea by introducing the barnase gene with 
tapetum-specific promoters, following which the fertility of the male 
sterile line was restored by crossing it with a barstar containing 
transgenic line [164]. 

Genome Editing 

Recently, the clustered regularly interspaced short palindromic  
repeat (CRISPR)-CRISPR associated protein 9 (CRISPR/Cas9) system has 
emerged as a versatile molecular tool for genome editing in different 
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organisms [165]. It has been shown that the CRISPR/Cas9 system is able to 
achieve efficient gene editing in plants through either transient 
experiments or in the production of transgenic plants [166]. In this 
system, the endonuclease Cas9 is directed to a specific DNA target by a 
synthetic guide RNA [167]. It is an innovative genetic tool that can modify 
the genome of any species with high precision and accuracy [168]. 
Although this technology is still in its early stages, its application has been 
demonstrated not only in model species such as Arabidopsis thaliana [169], 
but also in crops such as tomato (Solanum lycopersicum)[170] and wheat 
(Triticum aestivum)[171]. In Brassica napus, proof of concept was recently 
demonstrated by [172], who targeted the two homologues and four alleles 
of the BnALC gene, which is responsible for fruit dehiscence in Brassica. 
Similar reports have since followed, such as [173] who determined the 
mutation efficiency of CRISPR-Cas9 in 12 gene families. CRISPR/Cas 9 has 
also been used to modify the fatty acid desaturase 2 (FAD2) gene which 
catalyzes the desaturation of oleic acid in B. napus leading to the production 
of B. napus with high oleic acid [168]. The application of this system has 
been demonstrated also in B. oleracea [174] and B. carinata [175]. 
CRISPR/Cas9 therefore promises to be an important tool in Brassica 
improvement. In future, linking genetic and genomic information to 
germplasm bank resources could extend the reach of this genome editing 
technique to many genetic variants of agricultural significance present 
within the wild relatives of the Brassica crop species, allowing direct 
editing of crops to mimic wild relative variants.  

AVAILABLE GERMPLASM RESOURCES AND INFORMATION ON 
BRASSICA CROPS AND WILD RELATIVES 

Wild Brassiceae species can be found around the world in temperate 
climates [176], and hence may constitute a valuable source of 
locally-adapted germplasm for use in crop improvement. Although all of 
the cultivated Brassica species are thought to originate from roughly 
around the Mediterranean region, with wider distributions from Europe 
to North Africa to the Middle East and West Asia [176], Brassiceae 
germplasm has also been identified in North America in archeological 
and ethnobotanical studies [177], with wild mustard relative Sinapis 
arvensis widespread 2000 years ago in North Eastern American states 
([178] as cited in [176]). Other Brassiceae weeds and crop species have 
been identified in weedy habitats in Canada [179], the United States and 
Mexico [180,181], as well as in Australia [9], and of course Europe and 
Asia [176]. Germplasm resources and collections of Brassica crops and 
related species, which are either cultivated (domesticated lines) or 
growing in the natural environment, are mostly (90%) conserved as seeds 
in cold storage in gene banks [182]. These collections generally comprise 
elite and domesticated breeding lines, plus a few wild relatives which are 
being conserved for breeding as well as for research purposes. Overall, 
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conservation methods can basically be categorized into either in situ or 
ex situ conservation. 

In Situ Conservation of Germplasm Resources 

In situ conservation is the primary form of conservation for crop wild 
relatives, and either takes place in farmers’ fields or in natural 
environments. In situ conservation is promoted because landraces can be 
an essential component of indigenous cultures and show highly 
specialized local adaptations [183,184]. Growth of plants in the natural 
environment also allows selection and adaptation to changing 
environmental conditions and is highly cost effective [182]. Growing 
interest in the use of wild species in breeding [185,186] has underlined 
the need to also create national in situ inventories to encourage 
conservation. In situ conservation also includes conservation in natural or 
wilderness areas, national parks and special management areas. 
Understanding the genetic potential of Brassica crops and wild relatives 
is critical for the establishment of long term breeding programs. Useful 
agronomic traits which can potentially be introgressed from wild relatives 
into elite crops include resistance traits [176], salt tolerance [187,188] and 
cold tolerance [189]. However, to date ex situ conservation remains the 
most common form of germplasm conservation. 

Ex Situ Conservation of Germplasm Resources: Genebanks 

Ex situ conservation of plant genetic resources started in the 
mid-twentieth century, as an initiative to prevent the rapid loss of plant 
biodiversity resulting from the introduction of improved varieties to 
replace landraces [182,190,191]. Therefore, germplasm (or “gene”) banks 
were established with the intention to preserve genetic material which 
might be useful in future for cultivation or as material in breeding 
programs [192]. The major world germplasm collections of Brassica today 
include the Centre for Genetic Resources (CGN, The Netherlands),  
the Institute for Horticultural Plant Breeding (IVT, The Netherlands),  
the Horticultural Research Institute (HRI, UK) and the Gene Bank of the 
Crop Research Institute (UK)[193]. Other genebanks include the United 
States Department of Agriculture (USDA) (https://www.ars-grin.gov/npgs/) 
in the United States, the Australian Grains Genebank (https://grdc.com.au/ 
resources-and-publications/groundcover/gc110/australian-genebank), 
and the Nordic Genetic Resource Centre (NordGen) 
(https://www.nordgen.org/en/) in Norway. In Spain, the Brassica 
genebank MBG-CSIC (http://www.mbg.csic.es/es/) started its activities in 
1985. This gene bank holds a collection of Galician Brassica crops 
belonging to the species B. oleracea L., B. rapa L. and B. napus L., and 
houses a total of 644 accessions. B. oleracea varieties include kales  
(B. oleracea var. acephala), cabbages (B. oleracea var. capitata), and 
Tronchuda cabbage (B. oleracea var. costata). Brassica rapa includes the 
turnips, turnip greens, and turnip tops; and B. napus appears only in the 
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form known as “nabicol” or leaf rape [194]. The United Kingdom 
Vegetable Genebank (UKVGB) managed by the University of Warwick 
conserves approximately 14,000 accessions of crops including Brassica 
types [195]. Brassica genetic resources hosted at the UKVGB have been 
incorporated into several germplasm panels, including (amongst others) 
the European clubroot differential series (ECD) to help identify races of 
the clubroot-causing pathogen Plasmodiophora brassicae [196], Brassica S 
allele (self-incompatibility) collections [195] which comprise Brassica 
lines with characterized S-allele haplotypes, and other collections of  
B. oleracea and B. napus fixed diversity sets (homozygous 
doubled-haploid (DH) or inbred lines)[197]. In total, about 74,000 Brassica 
accessions from various sources have been identified: mostly conserved 
in Europe (41%) and Asia (41%) as well as a few in the Americas 
(12%)[38]. Brassica oleracea and B. rapa species, which comprise the most 
important Brassica vegetables, are represented worldwide by about 
20,000 (27%) and 18,000 (25%) accessions, respectively [198]. The 
European Brassica database (Bras-EDB; www.cgn.wageningen-ur.nl/pgr/ 
collections/brasedb/) contains detailed accession data on 32 collections 
from 22 European countries.  

A total of 412 accessions of wild relatives have also been identified in 
gene banks (mostly European) including 179 species at the University of 
Madrid in Spain, and 97 species at the Leibniz-Institut für 
Pflanzengenetik und Kultur Pflanzenforschung (IPK) in Gatersleben, 
Germany [199]. However, wild species are still under-represented in most 
ex situ collections [198].  

Information Databases 

Brassica databases are another important resource for crop 
improvement. These comprise freely available online databases which 
provide genomic and genetic data for important Brassica crops, including 
genome sequence information, predicted genes and associated 
annotations, and genetic marker information. In addition, several 
databases provide cytogenetic and taxonomy data, such as Brassibase 
(https://brassibase.cos.uni-heidelberg.de/), or species distribution and 
observation data (usually for specific countries or regions) for Brassica 
crops and wild relatives growing in the natural environment. In Canada 
for example, an electronic database provides taxonomy and synonymy 
information for 338 Brassicaceae genera and 3709 species (14,000 
taxonomic names) found distributed across Canada: http://www.cbif. 
gc.ca/eng/species-bank/?id=1370403266204 [1]. The Brassica database 
(BRAD (https://brassicadb.org)) has a specific focus on genome 
annotations and deep mining of the assembled Brassica crop genomes to 
provide information for breeding and research [200]. Another database, 
brassica.info, contains links to browsers and downloads for annotated 
reference genomes of B. napus, B. rapa and B. oleracea as well as Brassica 
linkage maps and molecular marker collections (www.brassica.info/ 
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genome/linkage_maps.html). The Brassica genome databases 
(http://www.plantgdb.org/BrGDB) mainly focus on genome data 
dissemination via CropStore and the Brassica Genome Database 
(BrassicaDB). The Brassica CropStore was initially developed to collate 
and disseminate information from crop research communities [201,202] 
as well as provide data information for Brassica phenotypic and genetic 
maps from different projects [203,204]. CropStore is an integral part of 
InterStoreDb which provides a platform for the utilization of a set of 
interlinked databases to assist linking phenotype to QTL regions for a 
particular trait. Data contained within CropStore can be accessed via a 
web interface [201,204]. 

In the era of fast growing technologies such as genome editing, 
sequencing and biotechnology tools, there is scope to improve the 
efficient utilization of information and resources provided by gene banks. 
Future gene banks should also aim to conserve DNA as well as products 
of genome editing and transgenic approaches, alongside genomic 
sequence information for plant accessions [194]. If possible, current gene 
banks should aim to provide genotypic as well as phenotypic information 
on Brassica species and wild relative collections in the form of an online 
portal or databases. A number of online Brassica species databases have 
been in existence since the era of reduced cost genome sequencing: the 
incorporation of these online databases with traditional germplasm 
banks would provide breeders and scientists with considerable resources 
for efficient crop improvement. 

FUTURE OUTLOOK 

In this review we describe the progress that has been made to date in 
the use of interspecific hybridization for Brassica crop improvement. But 
what may be possible in future? Recent technological advances in 
genome sequencing and editing have the potential to revolutionize the 
use of genetic diversity present in the wild relatives for Brassica crop 
improvement. Putatively, Brassica wild relatives with useful phenotypic 
diversity can be identified through screening of diverse populations 
under different environmental conditions, phenotype data then coupled 
with genome and resequencing data to link phenotypes to genotypes, 
followed by gene editing to directly install these genetic variants into the 
major Brassica crop species. Although this process may still be more 
speculative than realistic, the technological basis for this approach 
already exists today. High-throughput phenotyping platforms are 
available and under constant improvement for glasshouse and field 
environments [205–207]. In natural environments, traits have also been 
successfully linked to genetic loci through sequencing of contrasting 
species populations in different habitats [208]. Whole genome sequencing 
and resequencing is becoming increasingly cheap and available, with 
major strides being made in both improving genomic resources available 
for the Brassica crop genomes [209–212] and in the availability of 
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additional genomic resources for Brassica wild relatives [213,214]. As 
previously mentioned, genetic transformation and genome editing 
protocols have already been established for many of the Brassica crop 
species [172,174,175]. In future, we expect the true value of interspecific 
hybridization and the use of wild relatives for crop improvement in the 
agriculturally significant Brassica genus to be realized, with 
implementation of new technologies supported by gene banks and 
information resources for breeding and research outcomes. 
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