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ABSTRACT 

Wheat is a fundamental crop for improving global food security and 
the International Maize and Wheat Improvement Center (CIMMYT) has 
been a central pillar for providing high yielding, nutritious, disease- and 
climate-resilient wheat varieties to target countries, which is the basis for 
establishing more resilient agri-food systems especially in the developing 
world. Increasing wheat yield potential through plant breeding will play a 
crucial role in fulfilling the projected future global demand of wheat. New 
emerging technologies and breeding strategies must be looked at to 
accelerate the rate of genetic gains in wheat. Genomic selection (GS) in one 
of these strategies that has already demonstrated higher rates of genetic 
gains in animal breeding and is becoming an essential component of many 
plant breeding programs including wheat. Throughout the last decades the 
CIMMYT Global Wheat Program has made significant contributions to 
promote the implementation of GS in wheat. Several new genome-wide 
prediction models (e.g., models accounting for genotype × environment 
interaction or, more recently, deep learning methods) were developed and 
tested on CIMMYT wheat datasets. GS is routinely implemented in the 
CIMMYT spring bread wheat program since 2013. Here we summarize the 
learnings from 10 years of experience with GS in the CIMMYT Global 
Wheat Program and give a brief outlook on future work. 
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ABBREVIATIONS 

AUC, receiver operating characteristic curve; B × E, Band × Environment; 
BGLR, Bayesian Generalized Linear Regression; BMGF, Bill and Melinda 
Gates Foundation; CENEB, Campo Experimental Norman E. Borlaug; 
CIMMYT, International Maize and Wheat Improvement Center; DIFID, 
Department for International Development; DL, Deep learning; G × E, 
Genotype × Environment; GBLUP, Genomic best linear unbiased 
prediction; GEBV, Genomic-enabled breeding value; GS, Genomic 
Selection; GWAS, Genome-wide association study; EYT, Elite yield trial; 
HTP, High-throughput phenotyping; ICARDA, International Center for 
Agricultural Research in the Dry Areas; INIA, Instituto Nacional de 
Investigación Agropecuaria; M × E, Marker × Environment; MLP, multi-
layer perceptron; NGS, Next generation sequencing; PNN, probabilistic 
neural network; YT, Yield trials; QTL, Quantitative trait locus; ReLu, 
rectified linear activation unit; RKHS, Reproducing Kernel Hilbert Spaces; 
SNP, single nucleotide polymorphism; USAID, United States Agency for 
International Development 

INTRODUCTION 

Wheat (Triticum aestivum L.) ranks as the second most important food 
crop after rice and is the most widely cultivated cereal in the world. It is 
one of the fundamental basis of global food security, supplying 20% of total 
calories and a similar portion of total protein to the world’s population [1]. 
Currently, food security is under threat from ongoing climate change, 
plateauing of crop yield in several regions and declining natural resources 
(FAO, 2018, http://www.fao.org/). Increasing crop yield potential and 
closing the yield gap are two important aspects of the solutions proposed 
to achieve global food security in a sustainable manner with minimum 
environmental footprints [2,3]. 

The Global Wheat Program of the International Maize and Wheat 
Improvement Center (CIMMYT) is one of the most important public 
sources of high yielding, nutritious, disease- and climate-resilient wheat 
varieties for Africa, Asia, and Latin America, and is therefore a central 
pillar for more resilient agri-food systems in those countries. Lantican et 
al. [4] estimated that nearly 70% of the spring wheat growing regions in 
developing countries either grow CIMMYT wheat germplasm as a direct 
release or have used CIMMYT germplasm as a parent in their varieties. The 
development of wheat germplasm has been the core activity of the Global 
Wheat Program since its establishment in 1966 following the “Green 
Revolution”. Since then, CIMMYT’s wheat breeding programs have 
continuously evolved to meet production challenges and future demands 
for wheat production. Only recently, the impact of the semi-dwarf spring 
wheat breeding programs on improving grain yield was newly assessed 
during the time span of fifty years in optimum, drought and heat stressed 
environments [5]. In fact, since 1976, the program has periodically 
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estimated genetic gains in grain yield to evaluate progress in grain yield 
potential of new germplasm using various statistical methods [6–14]. 
Studies before 1990 reported rates of genetic gain in grain yield of around 
1.1%, while the most recently published studies reported genetic gains of 
around 0.6 to 0.7%. 

In order to keep up with the future demands of wheat production and 
to adapt to the changing environmental factors, breeders have constantly 
been turning to new and emerging technologies and breeding strategies. 
Recently, advances in highly efficient agri-genomic approaches, such as 
high-throughput next-generation sequencing (NGS) technologies that 
provide thousands to millions of data points at constantly decreasing costs, 
along with advancements in statistical solutions to exploit large amounts 
of genomic data, pave one way to modernize breeding programs [15,16]. 

The wheat genome is large and highly complex compared to many 
other cereal crops. Its estimated size of ~17Gb is in part attributable to 
wheat being an allohexaploid, with three different but highly related 
diploid genomes [17]. In addition, the wheat genome has experienced 
significant proliferation of repetitive elements, resulting in a composition 
of between 75 and 90% repetitive DNA sequences [18]. Nevertheless, the 
swift development of NGS during the last two decades has made it possible 
to produce draft sequences not only for the wheat diploid donors of the A 
(T. urartu, [19]) and D (Ae. tauschii, [20]) genomes, but also the tetraploid 
and hexaploid wheat genomes (T. durum and T. aestivum, [21,22]). 
Simultaneously, additional molecular marker platforms (e.g., single 
nucleotide polymorphism (SNP) arrays) and other resources (e.g., mutant 
libraries) were developed for wheat, that largely facilitate genome-wide 
characterization of germplasm and functional genomics to bridge the gap 
between genotype and phenotype [23].  

Genomic approaches have also been adopted by the CIMMYT wheat 
breeding programs [24]. For example, research on rust has mapped and 
officially designated 12 genes in the past decade using biparental linkage 
mapping. Among these genes, especially the three pleiotropic adult-plant 
resistance genes Lr34/Yr18/Sr57/Pm38, Lr46/Yr29/Sr58/Pm39 and 
Lr67/Yr46/Sr55/Pm46 are widely used across bread wheat breeding 
programs as a basis of partial resistance against the three rusts in wheat 
[25]. With the development of high-throughput molecular marker 
platforms, including NGS, genome-wide marker information has been 
generated on many different populations of CIMMYT wheat. These 
datasets have been utilized in genome-wide association studies (GWAS) to 
discover new quantitative trait loci (QTL) for various priority traits, 
including resistance to several diseases, grain quality, and grain yield 
components [26–33] and to understand the genetic basis of new traits [34–
36]. Resulting gene or QTL-associated molecular markers are routinely 
integrated in the CIMMYT shuttle breeding scheme by applying marker-
assisted selection or marker-assisted backcrossing. Both approaches are 
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applied to increase response to selection mainly for simply inherited traits 
[24]. 

In contrast to QTL and GWAS, genomic selection (GS) is a breeding tool 
that uses genome-wide marker information to make predictions on 
breeding values in a breeding program [37]. The use of genome-wide 
markers in crops had already been suggested by Bernardo [38]. After the 
publication of Meuwissen et al. [37] the approach first became popular in 
animal breeding before being tested and applied in plant breeding. GS uses 
available genotypic and phenotypic information to develop a prediction 
model that can subsequently be used to estimate the breeding values of 
parents used in crosses or for the selection of lines using genotypic data 
only. Thus, progeny can be selected and taken forward in a breeding 
program based on genotype alone, saving the cost, time and effort of 
phenotypic selection [39,40]. 

During the last decade, studies on GS in wheat have been growing. 
CIMMYT started to more aggressively explore GS as a breeding tool in 2010. 
Since then, CIMMYT has made significant contributions developing and 
testing various new genome-wide prediction models on CIMMYT wheat 
datasets. GS became operational in the CIMMYT spring bread wheat 
program in 2013. Here we summarize the learnings from 10 years of 
experience with GS in the CIMMYT Global Wheat Program. 

IMPROVING GENOME-WIDE PREDICTION ABILITY IN CIMMYT 
WHEAT DATASETS 

A large number of genome-wide prediction models in crops have been 
developed or adopted from other research fields to handle the high-
dimensional marker datasets that are typical of GS. The various types of 
models respond differently because they vary in their assumptions when 
treating the variance of complex traits. Throughout the last decade, the 
CIMMYT Biometrics Unit, in partnership with other research institutions, 
has developed and promoted various novel prediction algorithms and 
tested their implications in wheat. Furthermore, the team released the 
“Bayesian Generalized Linear Regression (BGLR)” package in the R 
computing environment [41] which is most commonly used at CIMMYT. 
Large genotypic data that accumulated over the years, together with 
comprehensive phenotypic data and supported by environmental 
information, often required complex statistical solutions. 

Integrating Pedigree Information 

Before the application of GS, predictions of genotypes have mainly been 
obtained using phenotypic and family data by estimating breeding values. 
Family data were usually represented by pedigrees and were routinely 
used in animal breeding, but less in crop breeding due to the lack of 
complete pedigree information [42]. Nevertheless, for decades CIMMYT 
wheat breeders have been using the Purdy nomenclature [43], a standard 
pedigree system for crosses, which makes it possible to generate 
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relationship matrices based on fully expanded genealogical information 
extracted from CIMMYT’s International Wheat Information System [44]. 

Formally, a breeding value can be partitioned into two components: (1) 
the parent average (that is, one individual receives 50% of its genome from 
each of its two parents) and (2) Mendelian sampling, which is the random 
sampling of the genome of each parent [42]. While the pedigrees capture 
the first component of family-based relationships, molecular markers can 
capture both components, family relationships and Mendelian segregation 
and are therefore expected to increase the accuracy of breeding values. 
Very early GS studies utilizing CIMMYT wheat datasets have already 
confirmed this assumption and showed that molecular markers increased 
genome-wide prediction abilities over the pedigree-derived models [45,46]. 
Furthermore, it was shown that if molecular markers and pedigree 
information are considered jointly, prediction abilities are sometimes 
slightly but consistently superior to the marker or pedigree-derived 
models alone. The additive relationship matrix 𝑨𝑨  calculated via the 
coefficient of parentage is therefore routinely integrated into almost any 
genome-wide prediction model at CIMMYT. 

Models with Linear and Non-Linear Kernels 

Let 𝑦𝑦𝑖𝑖  be the phenotypic value for an individual 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, … 𝑛𝑛  and 
let   𝑗𝑗 = 1 …𝑝𝑝  represent the marker genotypes coded as 0, 1, 2 (which 
correspond to aa, Aa and AA, respectively), and we define 𝑢𝑢𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑝𝑝
𝑖𝑖=1 , 

the response for i-th individual that can be represented as the sum of two 
quantities: a genetic signal 𝑢𝑢𝑖𝑖 and a residual (e.g., [37]), that is: 𝑦𝑦𝑖𝑖 = 𝜇𝜇 +
𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖  where 𝜇𝜇  is a general mean, 𝛽𝛽𝑖𝑖  is the j-th marker effect and 𝑒𝑒𝑖𝑖 
represents independent and identically distributed random variables with 
mean 0 and variance 𝜎𝜎𝑒𝑒2. The model can be written in matrix notation as: 

𝒚𝒚 = 𝜇𝜇𝟏𝟏 +𝑿𝑿𝑿𝑿+ 𝒆𝒆 (1) 

Usually in genomic applications, the number of phenotypic records is 
much smaller than the number of markers, and it is not possible to obtain 
the least square estimator for 𝑿𝑿 ; therefore, Bayesian or penalized 
estimation procedures are used to fit the model. In the standard Bayesian 
Regression model, it is assumed that 𝑿𝑿|𝜎𝜎𝛽𝛽2~𝑀𝑀𝑀𝑀(𝟎𝟎, 𝜎𝜎𝛽𝛽2𝑰𝑰) where 𝜎𝜎𝛽𝛽2  is the 
variance associated with the markers, 𝑰𝑰 is the identity matrix and MN 
stands for multivariate normal density. If we set 𝒖𝒖 = 𝑿𝑿𝑿𝑿, then model (1) 
can be rewritten as 𝒚𝒚 = 1𝜇𝜇 + 𝒖𝒖 + 𝒆𝒆  with 𝒖𝒖~N(𝟎𝟎,𝜎𝜎𝑔𝑔2𝐆𝐆)  with G being a 
linear kernel representing the genomic relationship matrix and 𝜎𝜎𝑔𝑔2  its 
associated variance parameter. This model is known in the literature as 
the GBLUP model and is probably the model most widely used in GS. 
Several software packages (e.g., BGLR, [41]; rrBLUP, [47], etc.) can fit these 
models. The GBLUP has also been widely used for genome-wide 
predictions at CIMMYT [46,48]. 

Some applications of GS have used semi-parametric genomic 
regression methods to account for non-additive variation [49,50]. These 
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methods have been used to predict complex traits in wheat with very 
promising practical results [51–54]. One non-linear method is the Gaussian 
kernel that appeared as a reproducing kernel in a semi-parametric model: 
the Reproducing Kernel Hilbert Spaces (RKHS) [51,54–58]. Therefore, the 
regression function 𝑢𝑢𝑖𝑖 = 𝑢𝑢�𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑝𝑝� described above can also be 
represented by the semi-parametric RKHS regressions or neural network 
types. The RKHS approach uses markers for generating a covariance 
structure matrix known as the reproducing kernel matrix which depends 
on the markers and on the bandwidth parameter (ℎ). A reproducing kernel 
is, for example, the Gaussian kernel function 𝐾𝐾ℎ(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑖𝑖′) = exp�−ℎ𝑑𝑑𝑖𝑖𝑖𝑖′

2 � , 
where 𝒙𝒙𝑖𝑖 , 𝒙𝒙𝑖𝑖′ are the marker vectors for the i-th and i'-th individuals, and 
𝑑𝑑𝑖𝑖𝑖𝑖′
2 = ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑖𝑖�

2𝑝𝑝
𝑖𝑖=1  is the squared Euclidean distance [54]. Recently, 

Pérez-Elizalde et al. [59] proposed an empirical Bayesian method for 
estimating h following a simple idea put forth by Gianola and Van Kaam 
[55], that is, to assign a prior 𝑝𝑝(ℎ) and obtain a posterior point estimate of 
ℎ. RKHS have been suggested as alternative models to capture non-linear 
and complex interactions between genes [56]. RKHS based models have 
been used in several research studies with CIMMYT wheat data, e.g., 
[46,54,59], among many others, and have produced good results when 
deploying GS in early breeding generations (see below). 

Several studies ([60–62] and [63]) showed that Gaussian kernel methods 
with the multi-environment genomic G × E model of Jarquín et al. [64] gave 
higher prediction accuracy than other linear kernel methods. In searching 
for non-linear kernels, Cuevas et al. [65] showed the use of the arc-cosine 
kernel. The arc-cosine kernel was initially described by Cho and Saul [66] 
using the deep learning in kernel machines. The importance of the arc-
cosine non-linear kernel is that it emulates deep neural network by 
including levels (hidden layers) and a recursive function. Cuevas et al. [65] 
and Crossa et al. [67] described the arc-cosine kernel method in a multi-
environment models including G × E. The arc-cosine kernel is 
computationally much simpler than the Gaussian kernel and performed 
very similarly to, and sometimes slightly better than, the Gaussian kernel. 

Accounting for Genotype × Environment (G × E) Interactions 

Multi-environment trials for assessing G × E interaction are a key 
component in plant breeding for selecting high performing and stable 
lines across environments. Multi-environment linear mixed models 
account for correlated environmental structures within the GBLUP 
framework and thus can increase accuracy when predicting the 
performance of unobserved phenotypes using pedigree and molecular 
markers. Burgueño et al. [68] were the first to use marker and pedigree 
GBLUP models to assess G × E in GS, while Heslot et al. [69] incorporated 
crop modeling data for studying genomic G × E. 
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Reaction norm model 

Jarquín et al. [64] proposed a reaction norm model where the main and 
interaction effects of markers and environmental covariates are 
introduced using highly dimensional random variance-covariance 
structures of markers and environmental covariables; the reaction norm 
model is an extension of the well-known GBLUP model. 

The baseline model for the phenotypes (𝑦𝑦𝑖𝑖𝑖𝑖) can be described as  

𝒚𝒚𝒊𝒊𝒊𝒊 = 𝝁𝝁 + 𝑬𝑬𝒊𝒊 + 𝑳𝑳𝒊𝒊 + 𝑬𝑬𝑳𝑳𝒊𝒊𝒊𝒊 + 𝒆𝒆𝒊𝒊𝒊𝒊 (2) 

where 𝜇𝜇 is the overall mean, 𝐸𝐸𝑖𝑖 (i = 1,…,I ) is the random effect of the i-th 
environment, 𝐿𝐿𝑖𝑖  is the random effect of the j-th line (j = 1,…,J), 𝐸𝐸𝐿𝐿𝑖𝑖𝑖𝑖  is the 
interaction between the i-th environment and the j-th line, and 𝑒𝑒𝑖𝑖𝑖𝑖 is the 
random error term. The assumptions are as follows: 𝐸𝐸𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀(0,𝜎𝜎𝐸𝐸2) , 
𝐿𝐿𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀(0,𝜎𝜎𝐿𝐿2),  𝐸𝐸𝐿𝐿𝑖𝑖𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀(0, 𝜎𝜎𝐸𝐸𝐿𝐿2 ) , and 𝑒𝑒𝑖𝑖𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀(0,𝜎𝜎𝑒𝑒2) , with N(.,.) denoting a 
normal density, and iid standing for independent and identically 
distributed. 

Markers can be introduced in (2) such that the effect of line (𝐿𝐿𝑖𝑖) can be 
replaced by 𝑢𝑢𝑖𝑖  defined by the regression on marker covariates (it 
approximates the genetic value of the j-th line). The vector containing the 
genomic values is 𝑢𝑢~𝑀𝑀𝑀𝑀(0,𝜎𝜎𝑔𝑔2𝐆𝐆), where 𝜎𝜎𝑔𝑔2 is the genomic variance, and 
G is a genomic relationship matrix [70,71]. Also, the effects of line (𝐿𝐿𝑖𝑖) can 
be replaced by 𝑎𝑎𝑖𝑖 , with 𝒂𝒂~𝑀𝑀𝑀𝑀(0, 𝜎𝜎𝑎𝑎2𝐀𝐀) , where 𝐀𝐀  is the additive 
relationship matrix derived from pedigree and 𝜎𝜎𝑎𝑎2 is the additive variance. 

The reaction norm model has been successfully applied using pedigree 
and genomic relationships [72,73]. Velu et al. [74] applied the reaction 
norm model to 330 wheat lines (from CIMMYT’s biofortification breeding 
program) having Zn and Fe content in the grain measured in Mexico and 
India. The authors used nine different reaction norm models with either 
𝑔𝑔𝑖𝑖  or 𝑎𝑎𝑖𝑖  or both 𝑔𝑔𝑖𝑖  and 𝑎𝑎𝑖𝑖 , as well as their interactions with 
environment 𝐸𝐸𝑖𝑖 . Results show that models including G × E always had 
higher genomic-enabled prediction abilities than the main effects models. 
This study was the first to discover the more complex genetic architecture 
of Zn and Fe concentration in the grain, leading the authors to favor the 
implementation of GS over marker-assisted selection for the improvement 
of biofortified wheat. 

The marker × environment (M × E) interaction model 

The M × E interaction model proposed by Lopez-Cruz et al. [75] 
decomposes the marker effects into components that are common across 
environments (stability) and environment-specific deviations 
(interaction). The model for the j-th environment can be written as: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 +�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�𝑏𝑏0𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖�+  𝑒𝑒𝑖𝑖𝑖𝑖 (3) 
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where 𝑦𝑦𝑖𝑖𝑖𝑖 represent the response of the i-th line in the j-th environment, 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 represents the k-th marker for individual i in environment j, 𝑏𝑏0𝑖𝑖 is an 
effect common to all environments and 𝑏𝑏𝑖𝑖𝑖𝑖 is a marker effect specific to 
each environment, 𝑏𝑏0𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀(0, 𝜎𝜎02),𝑏𝑏𝑖𝑖𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀(0, 𝜎𝜎𝑏𝑏2),  𝑒𝑒𝑖𝑖𝑖𝑖 ~𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀(0, 𝜎𝜎𝑒𝑒2). This model 
borrows information across environments while allowing marker effects 
to change across environments. The M × E model of Lopez-Cruz et al. [75] 
can be implemented using both shrinkage methods as well as variable 
selection methods; it can thus be used to identify genomic regions whose 
effects are stable across environments and other regions that are 
responsible for G × E. The M × E model is best suited for the joint analysis 
of positively correlated environments. Lopez-Cruz et al. [75] used the M × 
E model to analyze three CIMMYT wheat datasets; its prediction accuracy 
was substantially higher than that of an across-environment analysis that 
ignores G × E. 

Crossa et al. [73] used the M × E model to predict untested individuals 
and identify genomic regions whose effects are stable across 
environments and others that are environment-specific. Detecting regions 
for a complex trait such as grain yield is more complicated, and M × E 
interaction patterns are consequently more complex. Nevertheless, the M 
× E interaction Bayes B model detected marker main effects in regions of 
chromosomes that had important environment-specific grain yield 
marker effects in specific environments. 

Single Step G × E interaction model 

The single step method [76–79] extends the genomic relationship 
matrix to include information of non-genotyped individuals for which 
pedigree information is available. The method has been used mainly in 
animal breeding. Pérez-Rodríguez et al. [80] implemented and extended 
the single step model to include G × E interactions. The authors showed 
how to use the proposed model to predict grain yield in international 
environments (sites in India, Pakistan and Bangladesh) using 58,798 
CIMMYT wheat lines and concluded that prediction abilities of the 
proposed model were higher than those of models that did not include G × 
E interactions. 

Combining GS with High-Throughput Phenotyping (HTP) 

High-throughput phenotyping measures a large number of phenotypes 
through time and space at low cost and with less labor intensity using 
proximal and remote sensing [81]. The information collected with HTP can 
be combined with genotypic or pedigree information and be included in 
GS models to predict the trait of interest. Rutkoski et al. [81] used measures 
of canopy temperature, and a green and red normalized difference 
vegetation index to predict grain yield for 1092 wheat lines that were 
evaluated in 5 environments. The authors concluded that HTP can be 
included in GS models and leads to improvements in prediction abilities, 
which can be beneficial in the early stages of selection.  
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Montesinos-López et al. [82] were the first to propose Bayesian 
functional regression models that take into account the main effects of 
environment and genotype, all the available reflectance wavelength of the 
HTP data and the interaction terms (G × E and band × environment (B × E) 
interactions) for predicting the primary trait grain yield. The authors 
compared the prediction abilities of models that include interaction terms 
versus those that do not and compared the prediction abilities and 
implementation time of Bayesian functional regression models versus 
conventional Bayesian models that are not in the functional regression 
category. The authors found that using all bands simultaneously increased 
prediction accuracy more than using vegetative indices alone. The Splines 
and Fourier models had the best prediction accuracy. However, in this 
research the authors did not use genomic or pedigree information to 
complete the predictions using the HTP information. 

Some of the first researchers linking the genomic and the high 
dimensionality of the HTP data together were Montesinos-López et al. [83], 
who proposed a Bayesian functional regression analysis that takes into 
account all the bands using hyperspectral wavelengths and is 
implemented using two types of basic functions, B-splines and Fourier. 
This method resulted in superior prediction abilities for wheat grain yield 
compared to a range of other options. Montesinos-López et al. [83] further 
extended this model to incorporate genomic and pedigree information, in 
addition to accommodating G × E by modeling hyperspectral B × E 
interactions. Their study found that models that included the B × E term 
had higher prediction accuracies than those that did not, suggesting that 
hyperspectral reflectance may be a useful phenotype for modeling G × E 
interactions. The authors also observed that models with the B × E 
interaction terms were the most accurate models, whereas the functional 
regression models (with B-splines and Fourier basis) and the conventional 
models performed similarly in terms of prediction abilities. However, the 
functional regression models are more parsimonious and computationally 
more efficient because the number of beta coefficients to be estimated 
from the number of basis, is smaller than the total number of coefficients 
for all bands. 

When collecting hyperspectral data within a multi-environment 
context, the number of predictors increases in proportion to the number 
of environments and phenotyping time points observed, which may come 
at a computational cost depending on the type of prediction model used 
[83]. One possible approach that may minimize computation time would 
be to use the hyperspectral bands as a high dimensional predictor set, 
similar to the prediction with SNPs markers in GBLUP, that is, to create a 
relationship matrix between individuals using the hyperspectral bands 
[83]. In this way, the number of bands could be very large without 
increasing the complexity of the GBLUP prediction model. Separate 
genomic/pedigree and hyperspectral reflectance kernels could be 
integrated to model the genetic main effects and G × E effects, respectively. 

Crop Breed Genet Genom. 2021;3(2):e210005. https://doi.org/10.20900/cbgg20210005 



 
Crop Breeding, Genetics and Genomics 10 of 33 

Krause et al. [84] used hyper-spectral reflectance data to predict grain 
yield and lodging using data from 3771 CIMMYT wheat lines. The lines 
were evaluated in four breeding cycles (2013–2014, 2014–2015, 2015–2016, 
2016–2017) under five different environment/management treatments. 
The authors proposed a multi-kernel GBLUP model that includes the 
additive relationship matrix derived from pedigree, the additive 
relationship matrix derived from markers, a relationship matrix derived 
from the hyperspectral images and the G × E interaction for GS. The 
authors also concluded that deriving relationship matrices from aerial 
hyperspectral reflectance phenotypes can effectively predict grain yield in 
wheat within and across managed treatments and breeding cycles, 
potentially to be implemented in earlier breeding generations, when 
genotyping of many lines would be too costly. 

Incorporating GWAS Signal into Genomic Prediction Models 

In contrast to the single marker approach, haplotype-based approaches 
consider more than one marker to be able to turn biallelic SNPs into multi-
allelic haplotype loci. Haplotype-based approaches for genome-wide 
predictions may be favored in some cases, where QTL are more closely 
linked to haplotype alleles than to individual SNPs [85]. It has been 
hypothesized that such approaches can be used to boost genomic-enabled 
prediction abilities [86–89] with the argument that they can capture 
epistasis between SNPs [90,91]. Another approach proposed for boosting 
the prediction abilities is using GWAS-based marker effects as fixed effects 
in the model [92,93]. In some cases, both approaches have not shown any 
benefit or even negative impact on the prediction abilities. A third 
approach to enhance prediction abilities is using the Gaussian Kernel 
which can indirectly pickup epistatic effects [45,94]. In a recent study, we 
derived a GBLUP model that combines one or more of these three 
approaches - haplotype, GWAS-based marker effects used as fixed effects, 
and the Gaussian Kernel as a proxy for epistatic effects [95]. The genomic 
predictions were based on the G-BLUP model, using the following mixed 
model: 

𝑦𝑦 = 𝐗𝐗𝛽𝛽 + 𝐙𝐙𝑢𝑢 + 𝜖𝜖 (4) 

where y is a vector of phenotypes consisting of adjusted means, β is a 
vector of fixed effects, u is a vector of random genetic values, and  𝜖𝜖 is the 
vector of residuals.  X and Z are design matrices. The u was assumed to 
follow a Gaussian distribution 𝑢𝑢 ~ 𝑀𝑀(0,𝐊𝐊𝜎𝜎𝑔𝑔2) , where K is the genomic 
relationship matrix and 𝜎𝜎𝑔𝑔2 is the additive genetic variance. The residuals 
e is assumed to follow a Gaussian normal distribution 𝑢𝑢 ~ 𝑀𝑀(0, I𝜎𝜎𝑒𝑒2), where 
I is the identity matrix. In models including GWAS results, the GWAS 
discovered QTLs are used as fixed effects 𝐗𝐗 ∈ 𝐐𝐐, where 𝐐𝐐 ∈ {1,0},  1 or 0 
for each QTL columns based on their presence or absence. The K can be 
calculated as an additive relationship matrix (AM), where AM = MMT 
where 𝐌𝐌 ∈ {1,0,−1}  depending upon whether the markers show the 

Crop Breed Genet Genom. 2021;3(2):e210005. https://doi.org/10.20900/cbgg20210005 



 
Crop Breeding, Genetics and Genomics 11 of 33 

homozygous reference, the heterozygous reference or the homozygous 
alternate alleles. Similarly, we can calculate a haplotype-based 
relationship matrix AH = HHT where 𝐇𝐇 ∈ {1,0}  is depending on the 
presence of each haplotype for all haplotype loci. In addition to the 
conventional AH or AH matrix, we calculated the Gaussian Kernel based 
matrix for both markers and haplotypes. Although the highest prediction 
abilities were obtained with the most complex model including all three 
components, the highest gains in prediction abilities were revealed with 
the Gaussian Kernel. The GWAS-based marker effects used as fixed effects 
in the GS model alone had only minimum impact on the overall prediction 
ability. 

Deep Learning (DL) Methods 

Deep learning methods are machine learning methods inspired on the 
functioning of the human brain that gives computers the ability to learn 
without being explicitly programmed [96] and enables the computers to 
act and make data-driven decisions to carry out a certain task. Deep 
learning can be defined as a generalization of artificial neural networks 
where more than one hidden layers are used (Figure 1) which implies that 
more neurons are used for implementing the model. The adjective "deep" 
applies not to the acquired knowledge, but to the way in which the 
knowledge is acquired [97] since it stands for the idea of successive layers 
of representations. The “deep” of the models refers to the number of layers 
that contribute to a model (Figure 1). 

 

Figure 1. A feedforward deep neural network with one input layer, three hidden layers and two output 
layers. There are eight neurons in the input layer that corresponds to the input information, three neurons 
in each of three hidden layers, with two neurons in the output layers that correspond to the traits that will 
be predicted. 
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The deep neural network provided in Figure 1 is very popular; it is 
called feedforward neural network or multi-layer perceptron (MLP). The 
topology contains eight inputs, two output layers and three hidden layers. 
The input is passed to the neurons in the first hidden layer, and then each 
hidden neuron produces an output that is used as an input for each of the 
neurons of the second hidden layer. Similarly, the output of each neuron 
in the second hidden layer is used as an input for each neuron in the third 
hidden layer. Finally, the output of each neuron in the third hidden layer 
is used as an input to obtain the predicted values of traits of interest. It is 
important to point out that in each of the hidden layers, a weighted sum of 
the inputs and weights (including the intercept) is attained, which is called 
the net input, to which a transformation called activation function is 
applied to produce the output of each hidden neuron. 

The analytical formulas of the model given in Figure 1 for two outputs, 
𝑑𝑑 inputs (not only eight), 𝑀𝑀1 hidden neurons (units) in hidden layer 1, 𝑀𝑀2 
hidden units in hidden layer 2, 𝑀𝑀3 hidden units in hidden layer 3, and two 
output neuron are given by the following equations (5–8): 

𝑉𝑉1𝑖𝑖 = 𝑔𝑔1�∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(1)𝑥𝑥𝑖𝑖𝑖𝑖

𝑖𝑖=1 + 𝑏𝑏𝑖𝑖1�, 𝑗𝑗 = 1, … ,𝑀𝑀1 (5) 

𝑉𝑉2𝑖𝑖 = 𝑔𝑔2�∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(2)𝑉𝑉1𝑖𝑖 + 𝑏𝑏𝑖𝑖2

𝑀𝑀1
𝑖𝑖=1 �, 𝑘𝑘 = 1, … ,𝑀𝑀2 (6) 

𝑉𝑉3𝑙𝑙 = 𝑔𝑔3�∑ 𝑤𝑤𝑙𝑙𝑖𝑖
(3)𝑉𝑉2𝑖𝑖 + 𝑏𝑏𝑙𝑙3

𝑀𝑀2
𝑖𝑖=1 �, 𝑙𝑙 = 1, … ,𝑀𝑀3 (7) 

𝑦𝑦𝑡𝑡 = 𝑔𝑔4𝑡𝑡�∑ 𝑤𝑤𝑡𝑡𝑙𝑙
(4)𝑉𝑉3𝑙𝑙 + 𝑏𝑏𝑡𝑡43

𝑙𝑙=1 �, 𝑡𝑡 = 1, 2 (8) 

where 𝑔𝑔1(⋅),𝑔𝑔2(⋅),𝑔𝑔3(⋅) and 𝑔𝑔4𝑡𝑡(⋅)  are activation functions for the first, 
second, third and output layers, respectively; Equation (5) produces the 
output of each of the neurons in the first hidden layer, Equation (6) 
produces the output of each of the neurons in the second hidden layer, 
Equation (7) produces the output of each of the neurons in the third hidden 
layer and finally, Equation (8) produces the output of the two response 
variables of interest. The learning process involves updating the weights 
( 𝑤𝑤𝑖𝑖𝑖𝑖

(1),𝑤𝑤𝑖𝑖𝑖𝑖
(2),𝑤𝑤𝑙𝑙𝑖𝑖

(3),𝑤𝑤𝑡𝑡𝑙𝑙
(4))  and biases (𝑏𝑏𝑖𝑖1,𝑏𝑏𝑖𝑖2,𝑏𝑏𝑙𝑙3,𝑏𝑏𝑡𝑡4)  to minimize the loss 

function, and these weights and biases correspond to the first hidden layer 
(𝑤𝑤𝑖𝑖𝑖𝑖

(1),𝑏𝑏𝑖𝑖1), second hidden layer (𝑤𝑤𝑖𝑖𝑖𝑖
(2),𝑏𝑏𝑖𝑖2), third hidden layer (𝑤𝑤𝑙𝑙𝑖𝑖

(3),𝑏𝑏𝑙𝑙3) and 

to the output layer (𝑤𝑤𝑡𝑡𝑙𝑙
(4), 𝑏𝑏𝑡𝑡4), respectively. To obtain the outputs of each 

of the neurons in the three hidden layers, the rectified linear activation 
unit (RKHS) or other nonlinear activation functions (sigmoid, hyperbolic 
tangent, leaky ReLu, etc.) can be used. However, for the output layer, the 
activation functions (𝑔𝑔4𝑡𝑡) are selected according to the type of response 
variable that needs to be used (for example, linear for continuous 
outcomes, sigmoid for binary outcomes, softmax for categorical outcomes 
and exponential for count data). It is important to point out that when in 
Figure 1 only one outcome is present, this model is reduced to a univariate 
model, but when there are more than two outcomes, the DL model is 
multivariate. According to the universal approximation theorem, a neural 
network with enough hidden units can approximate any arbitrary 
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functional relationships [98,99]. DL with univariate or multivariate 
outcomes can be implemented in the keras library as front-end and 
Tensorflow as back-end [100] in a very user friendly way. Some results in 
the context of GS in wheat were revealed using the univariate and multi-
trait DL models. 

DL for univariate traits and for multiple-traits and multiple-environments 

Using nine datasets of wheat and maize, Montesinos-López et al. [101] 
found that when the G × E interaction term was not taken into account, the 
DL method was better than the GBLUP model for six out of the nine 
datasets. However, when the G × E interaction term was considered, the 
GBLUP model was the best in eight out of nine datasets under study and, 
in this case, only in one dataset, the DL method was better than the GBLUP 
model. In another study Montesinos-López et al. [102] performed a 
benchmark study to compare univariate DL method with the support 
vector machine and the conventional Bayesian threshold best linear 
unbiased prediction (TGBLUP). The authors did not observe large 
differences between the three methods. However, in many cases, the 
TGBLUP outperformed the other two methods. 

Next we compared the prediction performance of the multi-trait DL 
versus the Bayesian multi-trait and multi-environment model. The 
comparison was performed by [103] in two datasets of wheat and one of 
maize. The authors found that when the G × E interaction term was not 
taken into account in the three datasets under study, the best predictions 
were observed under the multi-trait DL model, but when the G × E 
interaction term was taken into account, the Bayesian multi-trait and 
multi-environment model outperformed the DL model. Montesinos-López 
et al. [104] also showed that the DL framework is very powerful for 
implementing multi-trait GS, but with mixed outcomes (binary, ordinal 
and continuous). In this publication they compared the prediction 
performance of the multi-trait DL with the univariate DL model. They 
found no relevant differences among the models in the dataset under 
study for any trait using one hidden layer when G × E interaction was 
considered. However, when the G × E interaction was ignored, they found 
statistical differences for grain yield, with a better performance under the 
multi-trait DL model. The average Pearson’s correlation in prediction 
ability was superior to the univariate DL by 22.44%. With two layers, the 
authors found the same results for grain yield with the multi-trait DL 
method being superior; however, with three layers, no statistical 
differences between the two models were found. 

Instead of predicting all individuals, using classifiers in GS can be 
attractive because they are trained to maximize the probability of an 
individual being a member of the target class, rather than searching for its 
overall performance [53]. In a recent study, González-Camacho et al. [52] 
compared two classifiers, MLP and probabilistic neural network (PNN), for 
predicting the probability of an individual being a member of a target 
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phenotypic class, using genomic and phenotypic data. The authors 
analyzed two traits (days to heading and grain yield) which were 
evaluated on 306 CIMMYT wheat lines and genotyped with 1717 markers. 
The grain yield was measured in seven environments, whereas days to 
heading was measured in 10 environments. The authors focused on the 
15th and 30th percentiles of the upper and lower classes for selecting the 
best and lowest performers. The wheat datasets were also used for 
predicting a binary response variable (with two classes). The criterion for 
assessing the prediction ability of MLP and PNN was the area under the 
receiver operating characteristic curve (AUC). The parameters of both 
classifiers were estimated by optimizing the AUC for a specific target class. 
González-Camacho et al. [52] found that PNN was more accurate than MLP 
for assigning wheat lines to the correct upper, middle or lower class. 
Results for the wheat dataset with continuous traits split into two and 
three classes showed that the performance of PNN with three classes was 
higher than with two classes when classifying individuals into the upper 
and lower (15 or 30%) categories. 

Although the advantages of using artificial neural networks and DL 
models when compared to conventional GS models are not apparent in 
our current studies, DL models look promising since there is empirical 
evidence that they outperform conventional models when very large 
datasets are available and efficiently handle larger data in their raw form. 
The latter makes it possible, for example, to more efficiently incorporate 
larger numbers of omics data (Metabolomics, Proteomics, Transcriptomics) 
in the same model, with such data becoming more and more accessible. 
Because genomic data represent a large number of independent variables 
and a small number of samples (observations), DL models are also difficult 
to implement; however, they offer many opportunities to design specific 
topologies (deep neural networks) that deal with any type of data in a 
better way than present models using GS. 

INTEGRATING GS IN THE CIMMYT GLOBAL WHEAT PROGRAM 

Overall, the many cross-validation experiments and studies performed 
in existing and new datasets and the comparison of different statistical 
and DL models by CIMMYT and many other research groups, have 
established that GS is a promising approach in wheat. Consequently, the 
multiple strategies for how to fit GS best into a wheat breeding program 
have more recently become the focus in the literature [105,106]. The 
optimal way to implement GS in plant breeding programs is not 
straightforward and is subject to the regularly applied breeding scheme 
and key traits targeted in each individual breeding program. Considering 
that CIMMYT breeding germplasm lines are related to each other as new 
lines are derived through intercrossing a diverse set of superior lines 
selected from previous cohorts, the initial aim in the CIMMYT Global 
Wheat Program was to implement GS, while not significantly changing the 
standard breeding method. Therefore, initially no specific set-up of GS (e.g., 
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training population design, optimizing the relatedness of training and test 
populations) was considered. 

Genomic Selection at Preliminary and Elite Yield Trial Stages 

At present, GS is most routinely used in the CIMMYT spring bread wheat 
breeding program to increase the accuracy of line selection across 
breeding cycles, where (1) the marker effects are calculated in one 
generation in a single or more years for selection in the same generation 
in the next year, or (2) the genomic estimated breeding values (GEBVs) on 
the basis of a more advanced generation are used for the selection of lines 
in an earlier, next generation (Figure 2). 

 

Figure 2. Simplified breeding scheme of the CIMMYT spring bread wheat breeding program, indicating the 
current implementation of GS. TC: top cross, YT: yield trial, EYT: elite yield trial, NARS: National Agricultural 
Research Services. 

The CIMMYT wheat breeding programs in Mexico use a selected bulk 
scheme for generation advance with two selection cycles annually as the 
standard breeding method (Figure 2). The earliest entry point of GS in the 
CIMMYT spring bread wheat breeding program is currently the first yield 
trials (YT). Annually, approximately 9000 advanced lines are tested for 
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grain yield in one environment with two replications at the Campo 
Experimental Norman E. Borlaug (CENEB), CIMMYT’s main wheat 
research station at Cd. Obregon, northern Mexico. In addition, the same 
lines are tested for stem and stripe rust resistance in one replication 
during the off-season in Njoro, Kenya. Figure 3 reveals the natural 
variation in grain yield across YT cycles because of the effect of 
environmental conditions and because the evaluated materials are change 
from cycle to cycle. 

 

Figure 3. Violin plot of adjusted grain yield per PYT cycle. 

Since 2013, all entries of the YT have been genotyped using GBS through 
the USAID Feed the Future ‘Applied Wheat Genomics Innovation Lab’ and 
‘Delivering Genetic Gain in Wheat’ projects. The prediction abilities of the 
YT using models including markers, pedigrees and environment with all 
available historic data in the training population in each year varied from 
0.20 to 0.42 for grain yield. The prediction abilities increased over time 
with recent values of 0.42 in cycle 2017–2018 [107] and 0.34 in cycle 2018–
2019. We expect that the higher prediction abilities were caused by a 
larger overall training population size, improved genotypic data and 
improved statistical models. Each year, the GEBVs have been used to assist 
in the selection decisions. Figure 4 shows an example of the observed vs. 
predicted grain yield for 8927 lines in the YT from cycle 2018–2019 
obtained using the reaction norm model [64] using markers and pedigree 
information jointly. The grain yield predictions for the 8,927 lines were 
performed using a training set of 43,315 lines evaluated during previous 
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PYTs (2013–2014, 2014–2015, 2015–2016, 2016–2017, 2017–2018). Applying 
a selection intensity of 20%, a total of 763 entries (42.7%) were in common 
between the observed and predicted values and under the top performers 
for the observed and predicted values. In addition, GS was able to predict 
a large percentage of low performing lines, e.g., a total of 2715 lines (60.8%) 
were in common between the observed and predicted values when culling 
the lowest 50% of all entries. 

 

Figure 4. Correlation between observed and predicted values in the PYT 2018–2019 cycle. 

The genotyping of all YT entries from 2013 to 2019 has generated a large 
genetic resource with ~80K reported sequence tags in a total of 62,827 
CIMMYT advanced breeding lines. This resource has also been used to 
evaluate GS in the elite yield trials (EYT) with 1,092 entries annually 
selected from the YTs, but much more extensively phenotyped [108–110]. 
Phenotypic evaluation routinely includes grain yield and grain yield 
components (e.g., days to heading, plant height, grain weight), disease 
resistance (e.g., stem rust, stripe rust, septoria tritici blotch, spot blotch), 
and traits related to end product quality (e.g., flour protein content, flour 
yield, alveograph, test weight, loaf volume). The prediction abilities across 
breeding cycles in the EYT from 2014 to 2017 were evaluated for each trait 
using the genomic best linear unbiased prediction (GBLUP) approach, 
where the lines of each EYT were predicted using the other three EYTs as 
training populations. Prediction abilities were particularly high for 
seedling and field resistance to stem rust and for several end product 
quality traits, up to 0.83 [32,110]. 
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With the vast amount of phenotypic data available for the lines 
evaluated in the EYT, implementation of GS to further assist any selection 
decision is rather inefficient. However, the EYT across breeding cycles is 
used as a training population to predict the entries in the earlier PYT 
generation the following year, which are not tested for end product quality 
traits, with only one replication for stem rust resistance and with only two 
replications for grain yield under irrigated conditions but not under 
drought or heat stress conditions. This scaling-up to earlier generations 
thus benefits selection efficiency in the YT but includes an additional 
genotyping cost. Indirect cost-savings, however, are significant given the 
cost (e.g., 65USD/sample for all end-product quality traits), labor, and 
resource (e.g., land area, quantity of seed) constraints in earlier 
generations such as the YT. 

Despite these good results throughout the years and continuous 
optimized logistics implementing GS in YT, CIMMYT wheat breeders have 
still not become fully convinced of using GS. This is probably mainly due 
to GS doing a poor job predicting all individuals and especially of finding 
the 10% top performers (often also called the ‘positive outliers’) that 
breeders aim to find. As outlined by Verges and van Sanford [111], the 
success of GS is usually measured by the prediction ability and the 
correlation between the predicted and observed phenotypic value, which, 
however, weakly reflects the implication for selection in a breeding 
program. The principal question for breeders e.g., in the YT is: “How many 
of the top performing lines are also correctly predicted and confirm my 
selection decision?” Our results in the YT confirm the suggestion of Bassi 
et al. [105] and Verges and van Sanford [111] that with a selection intensity 
of 20% (commonly used by breeders when selecting during early stages of 
testing) and with a prediction accuracy of 0.34, the 42% of the best lines 
were correctly selected with GS, greater than the expected accuracy 
provided by Pearson’s correlation. Equally, the percentage of correctly 
discarded lines can be high. However, with the current prediction abilities 
for grain yield with values between 0.3 and 0.5, the top individuals are 
unable to be predicted for such a complex trait with high G × E. 

Hybrid Wheat Prediction 

Hybrid wheat technology has caught renewed attention to increase 
wheat productivity. The ability to predict wheat hybrids using genomic 
information has greatly interested wheat breeders because it can enable 
them to select the best male, female or male-female combinations a priori. 
Such predictions can greatly facilitate hybrid wheat breeding by saving 
costs, selecting winning cross combinations and defining heterotic pools. 
A pilot study was therefore performed in the CIMMYT hybrid wheat 
program [112]. The prediction model included the GBLUP model with G × 
E interactions where similarity between lines was assessed by pedigree 
and molecular markers, and similarity between environments was 
accounted for by environmental covariables. Using the reaction norm 
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approach suggested by Jarquín et al. [64], the model was extended to 
include additional terms uH, uM and uF to represent include genotype 
(hybrid) × environment interaction and parent (male and female) × 
environment interaction, respectively. The models were tested in four 
cross-validation designs: (1) both males and females, (2) males only, (3) 
females only and (4) none were tested for heterosis. The average grain 
yield prediction ability by design was (1) 0.61–0.65, design (2) 0.53–0.55, 
design (3) 0.39–0.51 and design (4) 0.46–0.61. In all designs the highest 
prediction accuracies were achieved with the most complex model 
(GBLUP + Pedigree + Environment + Hybrid × Environment + Parents × 
Environment Model). Unfortunately, hybrid wheat research has currently 
been discontinued at CIMMYT. 

Using GS to Harness Gene Bank Accessions 

Although the accessions stored in gene banks represent a rich asset for 
breeders, alleles need to be moved from the accessions to cultivar 
development programs. Lengthy pre-breeding programs are required to 
develop lines that combine favorable alleles from gene banks with good 
agronomic performance to be subsequently used as parents in a breeding 
program. One possible application of GS is to identify potentially useful 
lines stored in the gene banks that are integrated as candidates in pre-
breeding programs. Based on the simulation of various pre-breeding 
options, Gorjanc et al. [113] concluded that germplasm enhancement 
breeding programs could be initiated directly from landraces or from 
landraces crossed with elite testers using GS. 

Crossa et al. [114] examined the genomic-enabled prediction accuracy 
of 8416 Mexican wheat landrace accessions and 2403 Iranian wheat 
landrace accessions stored in the CIMMYT gene bank. Two traits were 
measured in two environments and several other highly heritable traits 
were measured in a single optimum environment. The authors studied 
two genomic prediction strategies: (1) random cross-validation schemes 
where 20% of the accessions form the training set and 80% of the 
accessions comprise the testing set, and (2) prediction accuracy of 
reference core sets of sizes 10% and 20% of the total population to predict 
the remaining 90% and 80% of the accessions, respectively. Genomic 
predictions were generally of a magnitude (0.18–0.65, with a 20% core as 
the training population) that could be very useful for predicting the value 
of other accessions in the gene bank. 

Crossa et al. [48] reflect on the issues from pre-breeders and genetic 
resource conservationists, that is, can GS be employed to accelerate the 
flow of favorable alleles from the gene bank to form gene pools and 
advanced breeding populations, taking a target trait together with the 
number of agronomically required traits into account? This pre-breeding 
strategy has not been directly addressed at CIMMYT yet; however, several 
studies to explore the use of GS in pre-breeding are underway with the aim 
of increasing the use of gene bank accessions. 
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REORGANIZING THE CIMMYT WHEAT BREEDING PROGRAM 

CIMMYT is in the process of piloting and adopting new approaches to 
increase the current rate of genetic gain for grain yield through the Bill & 
Melinda Gates Foundation (BMGF) and Department for International 
Development (DFID) funded projects. While up to now, GS has mainly been 
implemented to assist in selection decisions, this project envisions that GS 
will become a mainstream process to increase the rate of genetic gain, 
mainly by reducing the generation interval through rapid cycling. 

Shortening the Generation Interval 

Recently, a two-part breeding strategy that uses GS was proposed to 
develop inbred lines [106,115]. The strategy reorganizes a breeding 
program in two distinct components (1) a population improvement 
component to identify parents for subsequent breeding cycles and 
increase the frequency of favorable alleles through rapid recurrent GS, 
and (2) a product development component to develop advanced breeding 
lines. The population improvement component relies on recurrent 
selection in an early breeding generation using GEBVs, and is expected to 
result in a fast increase of population means. Selected early generation 
plants enter the product development component to identify the superior 
inbreds. The product development component corresponds to regular 
breeding schemes for the development of inbred lines including GS. GS 
models are routinely updated using the phenotypic and genomic data 
generated in the course of product developments. By performing 
computer simulations comparing the two-part strategy with more 
standard and GS breeding schemes, Gaynor et al. [106] showed that long-
term genetic gain from the two-part strategy increased by up to 1.5 times 
compared with the best performing GS strategy. 

A second approach to turn generations over more quickly is rapid 
generation advance or ‘Speed Breeding’ [116]. By growing the plants in a 
temperature-controlled glasshouse under a prolonged photoperiod, plant 
growth can be accelerated to turn generations over in 2 to 3 months. 
Breeders may also be able to select for some basic traits (e.g., plant height, 
major disease resistance) under speed breeding conditions either 
phenotypically or using gene-associated molecular markers. Eventually 
the two-part strategy and speed breeding can be combined; however, both 
approaches require substantial reorganization of a wheat breeding 
program, considering infrastructure, costs, real-time logistics, traits to be 
evaluated at different stages, number of populations and population sizes 
to be used. 

CIMMYT has gained some initial experience on testing the response to 
selection for grain yield based on genomic predictions in early breeding 
generations in the framework of a BMGF-funded project. In this project, a 
random subset of around 200 F2 plants was selected from a larger set of 
GBS genotyped F2 plants derived from 40 different crosses. F2 derived F4 
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bulks were tested in replicated yield trials under optimal conditions for 
two years at CENEB (Bonnett, unpublished data). Response to selection 
calculating the GEBVs of F2 plants was assessed. Among the three models 
tested, the RKHS model (described above) showed correlation with the 
average yield. Lines derived from F2 plants with the highest 20% GEBV 
values from RKHS on average yielded 7% more than those derived from 
F2s with the lowest 20% GEBVs. These results are probably one of the first 
empirical evidence for a possible realized gain in grain yield obtained by 
applying GS in early breeding generations (Bonnett, in preparation). 

CIMMYT will pilot a new breeding scheme combining both the two-part 
strategy and the speed breeding approach (but modified) with the aim of 
accelerating the development of yield competitive high-Zn wheat varieties. 
The scheme includes a rapid turnover of generations as bulks through 
speed breeding and early generation GS which will include the earliest 
possible phenotype for Zn for selecting parents for the subsequent 
breeding cycle. Moreover, GEBV will be used to skip the YT-stage by 
directly going to EYT in 2–3 environments, thus saving 1 year in generation 
advancement and an additional year in yield phenotyping. 

Using Genome-Wide Predictions for Cross Design 

The design of new crosses is one of the most important decisions to be 
made in a breeding program. In the CIMMYT wheat breeding programs, 
the selection of crosses is a balance between choosing the best × best 
parents and maintaining genetic diversity for long-term genetic gains 
[117]. Because CIMMYT is distributing varietal candidates for further 
selection to identify adopted varieties to be grown in developing countries 
all over the world, maintaining genetic diversity has historically gained 
significant importance, and diverse genetic materials (e.g., landraces, 
synthetic hexaploid wheat, wild relatives) are routinely introgressed. 

Endelman [47] was the first person to propose using genome-wide 
predictions to design the crossing schemes in a plant breeding program. 
GS has been used extensively to predict the breeding values of animals 
used to generate progenies. The ability to predict the potential of a cross 
before it is created, allows more efficient use of the genetic and financial 
resources in a standard breeding program, especially in large breeding 
programs such as the CIMMYT breeding program, where large numbers of 
potential parents are tested, and a relatively high number of crosses are 
made annually. Lado et al. [118] has tested strategies for the selection of 
crosses using genome-wide prediction in the CIMMYT and MLP (Instituto 
Nacional de Investigación Agropecuaria) – Uruguay spring bread wheat 
breeding programs. Means and variances of all possible cross 
combinations were predicted for grain yield and quality traits. While the 
predicted mean progeny performance was the strongest driver for 
selecting superior crosses for grain yield, the predicted variance of the 
progeny was of larger relative importance for the quality traits. The same 
results were observed by Yao et al. [119], who consequently developed a 
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selection index that allowed identifying candidate parents for improving 
yield and quality traits simultaneously. 

Promising new statistical models have more recently been reported 
that balance selection while maintaining genetic diversity, which is 
important at CIMMYT. Genomic mating [120] or optimum cross selection 
[121] penalizes the selection of individuals that are too closely related or 
includes information on the complementarity of parents to be mated. 
Using genomic prediction to identify promising crosses can be introduced 
into a breeding program with limited impact on the overall logistics of the 
program. Therefore, CIMMYT breeders are intrigued by the possibility of 
exploring the potential of genome-wide prediction for cross design to 
allow a portion of their yearly crosses to be selected on this basis. However, 
these approaches require a good database for routine application. The 
Enterprise Breeding System (EBS) under development for utilization by 
CGIAR and national breeding programs should help in the routine use of 
sophisticated prediction tools. 

Increasing Family Size 

Juliana et al. [108,109] investigated the family structures in CIMMYT 
yield trials. In both YT and EYT, the sizes of families derived from crosses 
made between two or three parents are relatively small. For example. in 
the YT from 2018–2019, 25% of the families were only represented by 1 
line and less than 1% of the families had more than 20 full-sib lines. The 
same authors also observed that the phenotypic variance between full-sibs 
is low. Hickey et al. [122] simulated that GEBVs within bi-parental families 
increase from 0.4 to 0.6, considering 20 and 50 phenotypes, respectively. 
Verges and van Sanford [111] concluded that a minimum of 25 phenotypes 
per family would be needed in their study to stabilize prediction 
accuracies at a preliminary yield trial level. The issue of number versus 
size of breeding populations has been discussed and tested in the 
literature since the 1980s. More recently, Bernardo [123] and Witcombe et 
al. [124] both concluded that the ability to identify the breeding 
populations with the highest mean performance prior to making the 
crosses (and thus, parental selection) was most important in comparison 
to the number and size of the breeding population. In an applied GS 
context, there seems to be scope for a better selection of parents and for 
increasing the family size of populations with a reduction in the total 
number of populations. 

Sparse Testing in Target Populations of Environments 

CIMMYT and ICARDA annually distribute around 1000 genotypes to 
national research programs in global wheat growing environments 
through the International Wheat Improvement Network (IWIN) (Figure 2). 
The impact of IWIN at the national program and farm level has been well 
documented [125,126]. More recent CIMMYT projects such as the USAID 
Feed the Future ‘Applied Wheat Genomics Innovation Lab’ have a 
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significant focus on improving the line testing capacity and advanced 
training in national programs across various countries. This increased 
testing capacity has already allowed larger subsets of CIMMYT advanced 
breeding lines to be shared 1–2 generations earlier (e.g., national programs 
in India, Pakistan, Bangladesh and Nepal). Generated phenotypic data in 
these target populations of environments can be included in GS training 
and validation populations to assist in selection decisions [80]. To expand 
on this concept, e.g., the USAID project foresees building on this valuable 
phenotyping and breeding network and establishing a coordinated sparse 
testing model that can additionally include test sites with more limited 
capacity. GEBVs of an overall larger set of potential new high yielding lines 
for each target population of environments could be shared within the 
network, and seed of promising but non-phenotyped lines grown in the 
next generation. 

In this context, we recently studied three general cases of sparse testing 
allocation designs: (1) complete non-overlapping of lines in environments, 
(2) complete overlapping of lines tested in all of the environments and (3) 
combinations of the two previous cases where certain numbers of non-
overlapping/overlapping lines were distributed across the environments. 
We also studied several cases where the size of the testing population was 
reduced. This study used three extensive wheat datasets. Four different 
prediction models were used to study the effect of sparse testing in terms 
of the genomic-enabled prediction abilities; two models did not include G 
× E, whereas the other two models incorporated two forms of modeling G 
× E. The results showed that the prediction models that included G × E 
captured more genetic variability than the models with only the main 
genomic effects (G) term for all three datasets. Also, both G × E models 
provided overall higher prediction abilities for the different allocation 
designs comprising different combinations of non-
overlapping/overlapping lines in the environments. Reducing the size of 
the testing populations under all allocation designs decreased the 
prediction accuracy. Models including G × E offered the possibility of 
maintaining the prediction abilities higher when the two extreme 
situations occurred [(1) all non-overlapping lines and (2) all overlapping 
lines)], while reducing the size of the training set. These initial results of 
genomic-enabled prediction abilities for sparse testing on wheat datasets 
indicated that substantial savings of testing resources can be achieved by 
using allocation designs and applying prediction models incorporating G 
× E. Reducing the size of the testing sets always reduced the genomic-
enabled prediction ability. 

CONCLUSIONS 

Increasing crop yield potential is an essential factor for future food 
security. To achieve this, new breeding strategies and technologies are 
required to boost genetic gains. During the past two decades, successful 
studies on GS (including wheat) have been reported and have left little 
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doubt that GS is one of the breeding tools that can pave a path to continued 
crop improvement in the near future. However, it has also become 
apparent that while the methodological framework has been established, 
optimal strategies to implement GS are subject to the regular applied 
breeding scheme and key traits targeted in each individual breeding 
program. Overall, GS can be effective in a breeding program when 
prediction abilities are high, when traits are difficult or impossible to 
phenotype, or when the cost of genotyping outweighs the cost of 
phenotyping. 

For mainstreaming GS, CIMMYT is in the process of building the 
computational infrastructure to store genotypic, phenotypic and pedigree 
data, to combine these data and make genome-wide prediction, and to 
store the predicted values to be accessed by breeders while making 
selection decisions. 

CIMMYT is implementing GS in its regular applied breeding scheme 
and is looking towards redesigning some parts of the breeding program to 
explore accelerating genetic gains by shortening the breeding cycle. 
Subsequent empirical studies will be essential to prove the efficiency of 
these GS-featured breeding strategies. We want to emphasize that 
implementing GS alone cannot be the only solution to close the worrisome 
gap between current production trends and the projected future demand 
of crops, and breeding programs are required to continuously explore 
further technologies and breeding strategies. 
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