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Abstract

Ensuring the resilience and productivity of bread wheat (Triticum
aestivum L.) across diverse environments is essential for sustainable food
production, particularly in the context of climate change. However,
genotype-by-environment interaction (GEI) significantly influences the
selection of high-yielding and stable wheat genotypes across diverse
environments. This study evaluated 250 bread wheat genotypes,
including 240 elite lines from the International Center for Agricultural
Research in the Dry Areas (ICARDA) and 10 released varieties in Ethiopia,
across five environments during the 2022–2023 cropping season. The
trials were conducted using an alpha lattice design with two replications,
and agronomic traits, including grain yield, were analyzed using the
Additive Main Effects and Multiplicative Interaction (AMMI) and
Genotype + Genotype-by-Environment (GGE) biplot models. The analysis
of variance revealed significant effects of genotype, environment, and
their interaction on all measured traits. Environmental factors
contributed the largest portion of the total variance, particularly for
grain yield and plant height. The study identified G-180 and G-242 as the
most stable genotypes across environments, demonstrating consistent
performance and low genotype × environment interaction in both AMMI
and GGE analyses. G-232 and G-234 were more specific to certain
environments and might perform optimally in those settings but are less
stable across diverse environments. Additionally, the study highlighted
the importance of selecting genotypes based on mean yield and stability
for breeding programs. The findings provide valuable insights into
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breeding strategies for wheat improvement, emphasizing the need for
multi-environment trials in selecting resilient and high-yielding
genotypes suitable for diverse agroecological zones.

KEYWORDS: genotype-by-environment interaction; AMMI; GGE-biplot;
grain yield stability; multi-environment trials

INTRODUCTION

Wheat (Triticum aestivum L. AABBDD: 2n = 6x = 42) is a critical cereal
crop in global agriculture, with production surpassing 786 million tons
(USDA, 2024), thereby serving as a staple food in numerous countries. It is
a significant source of protein and calories, playing an essential role in
human nutrition [1]. In Ethiopia, bread wheat cultivation is extensive and
pivotal for food security, being the most important crop in the country
and well-suited to various agro-ecological zones [2]. Ethiopian wheat
production is conducted by smallholder farmers (SHF) in mid- and
highland regions, ranging from 1500 m to 3200 m above sea level [3]. The
Ethiopian government aims to achieve wheat self-sufficiency by
expanding arable land, organizing farmers into agro-clusters, and
enhancing irrigation-based wheat production during the dry season [4].
In the 2022 cropping season, wheat cultivation covered over 1.86 million
hectares, involving 4.54 million SHF. The significance of wheat
production in Ethiopia is substantial, contributing to the economic and
nutritional well-being of its population. Its adaptability to diverse agro
ecological conditions ensures sustainable cultivation across various
regions of the country.

The average wheat productivity in Ethiopia is 3.1 t·ha−1, which is lower
than the global average. This low yield is primarily attributed to the lack
of high-performing varieties that can thrive in Ethiopia’s diverse
wheat-growing regions [5,6]. Consequently, there is an urgent need to
enhance wheat yields through a suitable breeding program, focusing on
genetically resilient varieties capable of withstanding both biotic and
abiotic stresses across different environments. To meet the country’s
growing production needs, over 132 bread wheat varieties have been
released or registered [7]. However, frequent disease outbreaks can
rapidly overcome resistance genes in wheat varieties, necessitating
regular variety turnovers. Significant genetic variability in source
populations is essential to address the need for frequent variety
replacements. Sufficient genetic diversity allows for the combination of
novel traits that can withstand both biotic and abiotic stresses. To
identify the most stable and high-performing varieties, breeding
programs conduct multi-location trials with various advanced entries
under diverse conditions, allowing for the assessment of
genotype-by-environment interactions (GEI) and the development of
effective breeding strategies. Common statistical methods for computing
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GEI include genotype + genotype-by-environment (GGE) biplot analysis,
additive main effects, and multiplicative interaction (AMMI) analysis.

Conducting multi-environment trials with wheat germplasm sourced
from ICARDA is expected to facilitate the development of improved
wheat varieties by identifying genotypes that exhibit desirable
agronomic traits and resistance to major diseases. This study aimed to
evaluate phenotypic stability and genotype-environment interactions
across various traits in a diverse group of elite and commercial bread
wheat genotypes.

We hypothesize that significant genetic variability exists among the
tested wheat genotypes and that certain genotypes will exhibit stable
performance and broad adaptability across diverse environments,
making them suitable candidates for breeding programs targeting both
yield and resistance traits.

MATERIALS AND METHODS

Planting Materials and Experimental Environment

In this study, 250 bread wheat genotypes were evaluated under
rainfed and irrigation conditions during the 2022–2023 cropping season
in Ethiopia. These genotypes included 240 elite bread wheat genotypes
from the International Center for Agricultural Research in the Dry Areas
(ICARDA) wheat breeding program, as well as 10 bread wheat varieties
that had been released in Ethiopia. ICARDA developed these elite wheat
lines using shuttle breeding strategies to create desirable new varieties
for Central and West Asia, North Africa, and Sub-Saharan Africa
countries [8].

Field trials were conducted at four locations known for wheat
production: Adet, Koga, Dabat, and Kulumsa (Table 1). Hereafter, the
term ‘genotypes’ will be used to refer to both the elite breeding lines and
released varieties.

Table 1. Description of the study area and the recommended fertilizer rates of each site.

Agro-ecological
Characteristics

Test Locations
Adet Koga Dabat Kulumsa

Latitude (N) 11°39ʹ02″ 11°20ʹ57.85″ 13°05ʹ 8°00ʹ54″

Longitude (E) 37°10ʹ81″ 37°7ʹ29.72″ 37°50ʹ 39°09ʹ31″
Altitude (m.a.s.l) 2200 1953 2740 2217
Soil type Nitosols Nitosols Nitosols Luvisols
Mean Max T 26.8 ℃ 26.8℃ 24.5℃ 22.8 °C
Mean Min T 11℃ 9.7 ℃ 4.6℃ 10.5 °C
Annual Rainfall 1372 mm 1124 mm 1250 mm 832 mm
Recommended Fertilizer
N 92 111 88 60
P2O5 46 38 38 69
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m.a.s.l: meter above sea level, N: Northing, E: Easting, Max T: maximum temperature, Min T: minimum temperature.

Field Layout and Experimental Design

The field trials were laid out using an alpha lattice design with two
replications, and genotypes were randomly assigned to each replication
using R software. Each plot comprised two rows of genotypes, each 1 m
long and spaced 0.2 m apart. To ensure an appropriate nutrient supply,
fertilizers were applied to each plot based on the recommendations of the
specific site. At planting, all recommended P2O5 and half of the
recommended N were applied, while the remaining half of the N was
applied at tillering stage. In the irrigation trial, furrow irrigation the most
commonly used method in the region was employed. For the first four
weeks, irrigation was applied at intervals of three to four days.
Thereafter, irrigation was provided every seven days until 15 days before
harvest, after which it was completely discontinued. Other agronomic
practices were consistently implemented across the experimental area.

Measurements of Phenotypic Traits

The phenotypic data were scored as days to heading (when the spikes
of 50% of the plants were fully visible), plant height (average height of
five plants measured from the ground to the tip of the spike excluding
their own (cm)), spike length (average length of five spikes containing
grains (cm)), and grain yield (gm/plot). This yield data was taken from the
whole plot and converted to ton per hectare (t·ha−1) at 12.5% moisture
content. Five plants per plot were randomly selected for traits scored at
the individual plant level.

Data Analysis

The phenotypic data from each trial and the combined environment
were subjected to analysis using a Multi-environment Trial Analysis
‘metan’ software package in R [9]. The homogeneity of error variance was
tested using Bartlett’s test in R statistical software. To investigate the
genotype-environment interaction, the genotypes were considered fixed
effects, while the test locations were treated as random effects. The
stability parameters of the data were assessed using R statistical software.
Additionally, the analysis of AMMI and GGE-biplot was performed using
the R ‘metan’ software package.

The AMMI model is expressed by:

푌푖푗 = 휇 + 푔푖 + 푒푗 +
푘=1

N

휆푘� 훼푖푘훾푗푘 + 휀푖푗, (1)

In this formula, 푌푖푗 denotes the yield of the ith genotype in the jth
environment, μ represents the overall mean, while gi and ej are the j
indicate the deviations of genotype and environment from the overall
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mean, respectively. The term 휆푘 is the square root of the eigen value of
the PCA axis 푘, 훼푖푘 and 훾푗푘 are the principal component scores for PCA
axis 푘 of the 푖th genotype and the 푗th environment, respectively, and εij
is the residual term [10].

For each genotype, the AMMI stability value (ASV) was determined by
evaluating the relative contributions of the principal component axis
scores (IPCA1 and IPCA2) to the interaction sum of squares. The ASV as
described by [11,12] was calculated as follows:

ASV =
IPCA 1 푠푢푚 표푓 푠푞푢푎푟푒푠
IPCA2 푠푢푚 표푓 푠푞푢푎푟푒푠

∗ (IPCA1 푠푐표푟푒)
2

+ (IPCA 2 푆푐표푟푒)2 (2)

In this equation, IPCA1 Sum of squares/IPCA2 Sum of squares
represents the weight assigned to the IPCA1-value, calculated by dividing
the IPCA1 sum of squares by the IPCA2 sum of squares (obtained from the
AMMI analysis of variance table). A genotype’s adaptation to a specific
environment is indicated by a larger IPCA score, whether positive or
negative. Conversely, lower ASV scores suggest a genotype exhibits
greater stability across various environments [13].

The GGE-biplot model is

푌푖푗 − 휇 − 훽푗 = 휌1휎푖1훿1푗 + 휌2휎푖2훿2푗 + 휖푖푗 (3)

Where:
Yij is the expected yield of genotype i in environment j; µ is the grand

mean of all observations; βj is the main effect of environment j; p1, and p2

are the singular values of first and second largest principal components,
PC1 and PC2, respectively; the square of the singular value of a PC is the
sum of squares explained by the PC; σi1 and σi2 are the eigenvectors of
genotype for PC1 and PC2, respectively; and are the eigenvectors of
environment for PC1 and PC2, respectively; and is the residue not
explained by the primary and secondary effects.

RESULTS

Mean Performance

Table 2 presents the mean performance, standard deviations, and
ranges of genotypes for grain yield and phenotypic traits across five
environments. The mean values of DH ranged from 57.0 days at
Adet-2023 to 64.3 days at Kulumsa-2023. PH recorded its highest mean
value (85.4 cm) at Adet-2023 and lowest (75.1 cm) at Koga-2023. Spike
length showed notable variation among environments, with the longest
average spike observed at Adet-2022 (9.1 cm) and the shortest at
Dabat-2023 (7.82 cm). Grain yield exhibited the widest range of variability
across all traits and environments, with mean values ranging from 2.2
t·ha−1 (Kulumsa-2023) to 3.23 t·ha−1 (Adet-2022).
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Table 2. Summary statistics for days to heading (DH), plant height (PH), spike length (SL), and grain yield
(GY) of bread wheat genotypes evaluated across five environments in Ethiopia.

Trait Environment Mean Range SD CV

DH

Kulumsa-2023 64.3 51–85 4.8 7.47
Adet-2022 64.2 46–79 5.79 9.02
Adet-2023 57 46–73 5.99 10.5
Dabat-2023 57.9 31–84 7.49 12.9
Koga-2023 59 49–73 5.22 8.86

PH

Kulumsa-2023 77.8 58–100 7.61 9.77
Adet-2022 75.7 56.4–95.6 7.34 9.69
Adet-2023 85.4 67–102 6.95 8.13
Dabat-2023 82.9 52–103 5.49 6.62
Koga-2023 75.1 56–98.1 6.86 9.14

SL

Kulumsa-2023 8.85 4.5–14 1.36 15.3
Adet-2022 9.1 6.6–11.7 0.983 10.8
Adet-2023 7.87 5.6–10 0.754 9.59
Dabat-2023 7.82 6.67–9.67 0.462 5.91
Koga-2023 8.42 5.9–10.7 0.788 9.36

GY

Kulumsa-2023 2.2 0.08–6.1 0.932 42.3
Adet-2022 3.23 0.69–5.84 0.978 30.3
Adet-2023 3.14 0.43–6.07 1.25 39.8
Dabat-2023 2.7 0.22–7.78 1.37 50.7
Koga-2023 3.13 0.29–6.05 0.99 31.6

SD = standard deviation; CV = coefficient of variation, DH = Days to heading, PH = Plant height, SL = spick length, GY =

Grain yield.

Analysis of Variance

Significant differences among genotypes were observed across all five
environments for all measured agronomic traits and grain yield, with the
exception of spike length at Dabat (Table 3). Plant height and days to
flowering exhibited the highest genotypic variance across all
environments, whereas spike length showed the lowest genotypic
variance.

The analysis of variance demonstrated a significant impact of GEI
across all traits (Table 4). GEI accounted for 13%–47% of the total
variation in various traits, as indicated by the percentage of the total sum
of squares (PTSS) values from the AMMI analysis (Table 4).
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Table 3. Genotypic variance and heritability for grain yield and agronomic traits of five test environments.

Header Adet-2022 Adet-2023 Koga-2023 Dabat-2023 Kulumsa-2023

Traits σ2g H2 σ2g H2 σ2g H2 σ2g H2 σ2g H2

GY 0.30 *** 0.47 0.77 *** 0.68 0.48 *** 0.65 1.02 *** 0.74 0.41 *** 0.64

PH 32.77 *** 0.78 31.49 *** 0.80 45.16 *** 0.98 7.64 *** 0.39 24.34 *** 0.59

DH 29.36 *** 0.93 32.48 *** 0.95 26.34 *** 0.98 40.42 *** 0.73 16.24 *** 0.82

SL 0.49 *** 0.74 0.29 *** 0.66 0.58 *** 0.97 0.02 * 0.20 0.53 *** 0.37

GY = grain yield; PH = plant height; DH = Days to heading; SL = spike length, ***: very highly significant Difference (p <

0.001), **: highly significant difference (p < 0.01) and *: significant difference (p < 0.05).

Additive Main Effect and Multiplicative Interactions (AMMI) Analysis

AMMI based ANOVA

The AMMI analysis revealed significant effects of genotype (G),
environment (E), and genotype-environment interaction (GEI) on all
phenotypic traits analyzed (Table 4). Among the sources of phenotypic
variance (E, G, and GEI), the environment accounted for the largest
variance for all traits, highlighting its critical role in determining
phenotypic values (Table 4). The proportion of the total sum of squares
attributed to the environment ranged from 13.89% for grain yield to
30.72% for plant height, underscoring the importance of growing
conditions for the targeted traits. The first two interaction principal
component analysis (IPCA) axes explained about 70.34% of the GEI across
all the environments for grain yield.
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Table 4. Mean square (MS), percentage of the total sum squares (PTSS) from AMMI analysis of variance for
four traits in 250 elite bread wheat genotypes growing in five environments and percentages of total
interaction sum squares (PTISS) of the interaction principal components (IPC).

Source of Variation DF
Grain Yield Spike Length
MS PTTS PTISS MS PTTS PTISS

Genotypes 249 3.83 *** 35.62 2.66 *** 30.47
Environments 4 92.90 *** 13.89 163.79 *** 30.17
REP(ENV) 5 18.35 *** 3.43 14.41 *** 3.32
GEN: ENV 996 1.26 *** 47.06 0.79 *** 36.05
IPCA 1 252 2.05 *** 40.98 1.39 *** 44.76
IPCA 2 250 1.48 *** 29.36 0.77 *** 24.43
IPCA 3 248 0.84 ** 16.58 0.59 ** 18.75
IPCA 4 246 0.67 ns 13.08 0.38 ns 12.06
Error 1245 0.65 0.47

Source of Variation DF
Plant Height Days to Heading
MS PTTS PTISS MS PTTS PTISS

Genotypes 249 201 *** 36.96 265 *** 62.95
Environments 4 10,384 *** 30.72 6206.7 *** 23.69
REP(ENV) 5 185 *** 0.68 55.6 *** 0.27
GEN: ENV 996 43 *** 31.63 13.8 *** 13.09
IPCA 1 252 61 *** 35.99 23.3 *** 42.84
IPCA 2 250 51 *** 29.74 14.7 *** 26.84
IPCA 3 248 34 *** 19.64 9.2 *** 16.68
IPCA 4 246 25 ** 14.63 7.6 * 13.64
Error 1245 20 6.3
*** = very highly significant (p < 0.001); ** = highly significant (p < 0.001); * = significant (p < 0.05); ns = not significant

(p > 0.05); ENV= Environment; GEN= Genotypes; DF= Degrees of freedom.

Impacts of the Environments on the Performance of Genotypes

The mean grain yield of genotypes varied widely by location, from
0.26 t·ha−1 for genotype G-259 at Kulumsa to 6.68 t·ha−1 for genotype G-215
at Dabat. The average performance of genotypes differed across the five
test locations, with the lowest and highest mean grain yields recorded at
Kulumsa-2023 (2.2 t·ha−1) and Adet-2022 (3.23 t·ha−1), respectively (Table
5). The performance of agronomic traits also varied by location: plant
height ranged from 75.09 cm in Koga-2023 to 85.43 cm in Adet-2023; spike
length varied from 7.87 cm in Adet-2023 to 9.09 cm in Adet-2022; and
days to heading ranged from 56.96 days in Adet-2022 to 64.28 days in
Kulumsa-2023 (Table 5). The AMMI analysis identified the top four
genotypes for all measured phenotypic traits at each test location.
Typically, the top four genotypes varied across test locations for a specific
trait (Table 5). However, genotype G-216 consistently ranked among the
top four genotypes at both Kulumsa-2023 and Koga-2023.
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Table 5.Test location-specification mean values, IPCA1 score, and the first four genotypes selected by AMMI
for the four traits.

Trait Environment Mean AMMI1 Score 1st 2nd 3rd 4th

Grain yield

Adet-2022 3.23 3.242 G-129 G-161 G-177 G-105
Adet-2023 3.14 −0.493 G-248 G-222 G-244 G-246
Dabat-2023 2.70 −2.263 G-215 G-124 G-117 G-234
Koga-2023 3.13 −0.430 G-223 G-232 G-216 G-102
Kulumsa-2023 2.2 −0.056 G-216 G-260 G-178 G-231

Spike Length

Adet-2022 9.09 0.510 G-247 G-183 G-152 G-182
Adet-2023 7.87 0.527 G-241 G-220 G-87 G-71
Dabat-2023 7.82 1.096 G-87 G-47 G-221 G-232
Koga-2023 8.42 1.082 G-71 G-184 G-112 G-104
Kulumsa-2023 8.85 −3.214 G-241 G-249 G-219 G-85

Plant Height

Adet-2022 75.75 −3.229 G-255 G-182 G-183 G-215
Adet-2023 85.43 −1.597 G-182 G-190 G-52 G-222
Dabat-2023 82.92 −1.255 G-47 G-52 G-255 G-215
Koga-2023 75.09 8.270 G-255 G-182 G-228 G-232
Kulumsa-2023 77.84 −2.188 G-202 G-190 G-186 G-47

Days to
heading

Adet-2022 64.24 1.879 G-15 G-215 G-257 G-7
Adet-2023 56.96 2.733 G-215 G-206 G-15 G-93
Dabat-2023 57.94 −6.439 G-15 G-215 G-93 G-207
Koga-2023 58.99 0.703 G-15 G-197 G-215 G-179
Kulumsa-2023 64.28 1.124 G-258 G-206 G-215 G-219

Stability of Genotypes Identified Based on AMMI-ASV

The AMMI analysis is frequently employed to identify
high-performing, stable genotypes, with an IPCA1 value close to zero
indicating stability. The AMMI, additive main effects, and multiplicative
interaction stability value (ASV) for grain yield of to 10% and bottom 10%
of the genotypes is presented in Tables 6 and 7. The range of ASV value
from 0.011 (G-82) to 1.35 (G-117) was observed for grain yield.

AMMI 1

The AMMI biplots of the grain yield of 250 bread wheat genotypes
across five locations are presented Figure 1A. In the current study, IPCA1
for grain yield explained 41% of the variation attributed to GEI (Figure 1).
In this biplot, the horizontal axis represents the mean grain yield, while
the vertical axis captures the interaction effects through IPCA1 scores.
Genotypes positioned close to the x-axis and near the origin (IPCA1 ≈ 0)
are considered more stable across environments, with minimal
interaction effects. Several high-yielding genotypes across the test
locations were found to have low IPCA1 values (between −0.2 and 0.2),
including G-180, G-242, G-254, G-260, G-257, G-5, G-244, and G-178 as the
most stable genotypes. In this study, genotypic stability was further
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assessed using the AMMI Stability Value (ASV) and Yield Stability Index
(YSI). Genotypes G-180, G-260, and G-242 had ASV values below 0.23,
indicating exceptional stability across environments. Similarly, these
genotypes also recorded YSI scores below 100, reinforcing their
desirability for both yield performance and stability. Genotypes with a
low YSI, overlapping with those having a low ASV indicating their
stability across test locations (Table 6).

AMMI 2

The AMMI2 biplot (Figure 1B), which plots IPCA1 against IPCA2
(explaining an additional 29.4% of the GEI variance), provides a more
nuanced view of specific and broad adaptability. In this biplot,
environments Adet-2022 and Dabat-2023 are positioned furthest from the
origin, and exhibited the highest IPCA1 (either positive or negative) for
grain yield, making them suitable test sites for differentiating genotypes
based on grain yield (Table 5), suggesting they possess strong
discriminative ability, and thus are highly informative for identifying
genotypic differences. These locations could serve as effective selection
environments in future trials. Conversely, environments such as Koga
and Kulumsa, which cluster near the origin, exhibited less GEI, implying
greater environmental stability and limited capacity to discriminate
among genotypes.

In terms of genotypic behavior, those located near the center of the
biplot (origin) demonstrate general adaptability, showing minimal
crossover interaction across environments. Meanwhile, genotypes
positioned farther from the origin exhibit greater interaction effects and
thus more specific adaptability to particular environments. Notably,
genotype G-215, which was distantly located from the origin toward the
positive IPCA1 axis, indicates possible specific adaptability to
high-yielding or more favorable environments such as Dabat-2023.

Overall, the combination of AMMI1 and AMMI2 biplot analyses
provides a comprehensive understanding of both the stability and
adaptability of the tested bread wheat genotypes. Genotypes such as
G-180, G-260, and G-242 are recommended for broader adaptation
breeding, while environments like Adet-2022 and Dabat-2023 are key
sites for future selection and testing efforts.
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Figure 1. AMMI 1 (A) and AMMI2 (B) Biplot for the grain yield of 250 bread wheat genotypes and five
locations respectively. Where, Env: Environment and Gen: Genotypes.

GGE Biplot Analysis

The GGE-biplot methodology offers breeders an enhanced approach
for making selection decisions based on mean performance and stability.
As illustrated in Figure 2A, 250 bread wheat genotypes were ranked
according to mean grain yield performance and stability using an
Average Environment Coordinate (AEC) on the genotype-focused biplot.

“Which-Won-Where” Approaches

Figure 2B depicts a which-won-where polygon view of the biplot,
illustrating the environments in which each wheat genotype exhibited
optimal performance. The biplots accounted for approximately 69.11% of
the total variation in grain yield, attributed to genotype and
genotype-environment interaction (GEI). The genotypes located at the
vertices of each sector in the biplot were the highest performers in the
respective environments. Genotypes positioned closer to the center of the
biplot demonstrated high stability compared to those at the vertices. The
polygonal representation of the GGE-biplot identified G-225, G-117, G-234,
G-232, G-106, G-258, G-138, G-104, G-259, and G-240 as the genotypes most
responsive to environmental interactions for grain yield, as they
occupied the vertices of the polygon. Genotypes situated within the
polygon exhibited low responsiveness to environmental interactions.
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Figure 2. GGE-biplot for grain yield showing ranking genotypes (A) Means vs. Stability (B) Which-won
where of the GGE biplot under five test locations for yield and stability performance. Where, Env:
Environment and Gen: Genotypes.

Mean vs. stability of genotypes

When the single value portioning is set to one (SVP = 1), the average
environment coordinate (AEC) line intersects the origin of the biplot. The
“mean vs stability” perspective, commonly referred to as AEC and SVP,
facilitates the evaluation of genotypes by focusing on average
performance and stability across diverse environmental conditions
(Figure 2A). The biplot comprises two lines: (i) the AEC ordinate and (ii)
the AEC abscissa. The arrow on the first line in Figure 2A indicates
superior mean performance for the trait under investigation. It is noted
that G-234 attained the highest grain yield, whereas G-259 exhibited the
lowest. G-232, G-216, and G-212 demonstrated both high grain yield and
stability, as they are positioned on the AEC abscissa with minimal
projection onto the AEC ordinate.

Performance of Genotypes and Genotypic Variation

The performance of genotypes and genotypic variation was significant,
with mean grain yield ranging from 2.1 to 4.5 (as shown in Tables 6 and
7). The genotypes G-137, G-2, G-7, G-42, G-169, G-68, G-149, G-207, G-148,
and G-51 were among the lowest-performing genotypes (Table 7),
whereas G-234, G-232, G-124, G-180, G-216, G-2015, G-141, G-242, G-239,
and G-212 were among the top-performing genotypes in terms of mean
grain yield (Table 6). The AMMI1 analysis of grain yield revealed that
G-117, G-161, G-105, G-13, and G-225 had higher IPCA1 values than the
other genotypes, making them more significant contributors to the
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overall GEI. In contrast, G-234, G-232, G-124, G-180, G-216, and G-215
exhibited the highest mean grain yields with lower IPCA1 values.

Table 6. The top 10% best performing and stable genotypes (top-down) of 250 bread wheat genotypes in
mean grain yield across the five tested environments and their corresponding AMMI stability values.

S/N Header GY t·ha−1 ASV YSI rASV rGY IPCAg1 IPCAg2 IPCAg3
1 G-234 4.471 0.694106 234 233 1 −0.49247 0.09584 0.21796
2 G-232 4.423 0.660335 229 227 2 −0.46889 −0.08733 −0.16820
3 G-124 4.233 0.837048 246 243 3 −0.54700 0.34294 0.33686
4 G-180 4.229 0.052138 12 8 4 0.01788 −0.04577 0.34109
5 G-216 4.198 0.568213 213 208 5 −0.27039 −0.42473 −0.56797
6 G-215 4.126 0.998601 255 249 6 −0.47334 0.74875 0.14814
7 G-141 4.081 0.490842 194 187 7 −0.35162 −0.00045 0.24673
8 G-242 3.982 0.237687 82 74 8 −0.13492 −0.14500 0.10707
9 G-239 3.970 0.809949 251 242 9 −0.56872 −0.16050 0.34203
10 G-212 3.930 0.460879 188 178 10 −0.31533 0.13659 −0.04363
11 G-246 3.892 0.568692 220 209 11 −0.33346 −0.32669 0.09711
12 G-245 3.855 0.323401 133 121 12 −0.15510 0.24024 0.28424
13 G-106 3.839 0.532931 214 201 13 −0.31286 −0.30542 −0.00351
14 G-257 3.838 0.273976 113.5 99 14.5 0.03221 0.27026 0.36911
15 G-260 3.838 0.111825 38.5 24 14.5 −0.06304 0.06900 −0.37777
16 G-102 3.821 0.635928 239 223 16 −0.44796 0.11567 −0.06970
17 G-5 3.816 0.298326 125 108 17 0.12219 −0.24476 0.51156
18 G-255 3.784 0.414804 178 160 18 −0.26857 0.17751 0.11861
19 G-244 3.772 0.527504 217 198 19 0.11622 −0.50194 −0.04951
20 G-133 3.772 0.546934 224 204 20 −0.38649 −0.08978 0.18256
21 G-222 3.768 0.545620 224 203 21 −0.29330 −0.36066 0.33020
22 G-178 3.759 0.259392 108 86 22 −0.13554 −0.17744 −0.35415
23 G-117 3.690 1.346073 273 250 23 −0.96318 0.06438 0.31408
24 G-112 3.669 0.801348 265.5 241 24.5 −0.46320 0.47336 0.21491
25 G-187 3.669 0.320077 142.5 118 24.5 0.22224 0.07879 −0.39500

GY= grain yield t·ha−1; ASV= AMMI stability value; YSI= yield stability index; rASV= rank ASV; rYSI= rank YSI.
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Table 7. The bottom 10% least performing and unstable genotypes (From bottom-up) of 250 bread wheat
genotypes in mean grain yield across the five tested environments and their corresponding AMMI stability
values.

S/N Header
GY
t·ha−1 ASV YSI rASV rYSI IPCAg1 IPCAg2 IPCAg3

1 G-259 1.041 0.51701 445 195 250 0.36803 −0.05797 0.27365
2 G-134 1.412 0.490554 435 186 249 0.33763 0.13607 0.09920
3 G-240 1.543 0.121666 275 27 248 0.03835 0.10925 −0.14813
4 G-192 1.581 0.139375 280 33 247 −0.06882 0.10098 −0.24427
5 G-235 1.582 0.371023 389 143 246 0.21270 0.22250 0.04137
6 G-127 1.620 0.216333 309 64 245 0.13203 −0.11328 −0.23842
7 G-73 1.656 0.179034 294 50 244 0.12715 −0.02345 −0.12048
8 G-164 1.768 0.255173 326 83 243 0.14622 0.15314 0.26464
9 G-203 1.794 0.263358 333 91 242 0.12511 0.19712 0.06040
10 G-165 1.812 0.374178 386 145 241 0.18270 −0.27380 −0.05750
11 G-14 1.837 0.461506 419 179 240 0.19642 0.37122 −0.06894
12 G-58 1.849 0.229023 307 68 239 −0.14223 0.11416 −0.12170
13 G-206 1.875 0.349441 372 134 238 0.20782 0.19480 −0.14137
14 G-8 1.916 0.263715 330 93 237 0.13731 −0.18113 −0.06673
15 G-92 1.921 0.448466 408 172 236 0.32092 −0.02072 0.19699
16 G-51 1.944 0.068714 250 15 235 0.04559 0.02593 0.11748
17 G-148 1.957 0.663351 462 228 234 0.47446 0.03719 0.03417
18 G-207 1.972 0.612520 453 220 233 0.41519 0.19817 0.27514
19 G-149 2.002 0.274483 332 100 232 0.19281 0.05384 0.14999
20 G-68 2.042 0.302713 342 111 231 −0.01722 0.30176 0.23686
21 G-169 2.072 0.231202 300 70 230 0.16540 0.01216 −0.03530
22 G-42 2.075 0.311854 344 115 229 0.21200 −0.09834 −0.09158
23 G-7 2.087 0.687227 460 232 228 0.45985 0.24541 −0.07552
24 G-2 2.092 0.057530 237 10 227 0.00428 0.05722 0.20234
25 G-137 2.105 0.658886 452 226 226 0.46983 0.06321 0.04295
GY= grain yield t·ha−1; ASV= AMMI stability value; YSI= yield stability index; rASV= rank ASV; rYSI= rank YSI

DISCUSSION

The primary objective of a plant breeder is to identify favorable
genotypes through the analysis of data from trials conducted in various
environments to develop a variety that exhibits both high yield potential
and consistent performance under diverse environmental conditions
[14,15]. The use of appropriate statistical models and methodologies aids
in forecasting the mean performance of genotypes across multiple
environments, thus enabling the identification of high-performance
genotypes with broad adaptability [16,17]. The current study was
conducted to determine the genotypic variability among bread wheat
genotypes tested for grain yield and other agronomic traits and to assess
the impact of GEI.
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Genetic variation is pivotal in crop breeding programs, facilitating the
development of new varieties with enhanced grain yield potential and
stability across diverse climatic conditions [18,19]. The analysis of
variance indicated significant differences among the tested genotypes for
all agronomic traits in each environment. Combined ANOVA further
confirmed that genotype, location, and their interaction significantly
affected grain yield and other agronomic traits. Similarly, [6,20,21]
reported substantial genetic variability in grain yield and other
agronomic traits among bread wheat genotypes in Ethiopia. The
pronounced impact of highly significant genotype-environment
interaction (GEI) on the ranking order of the tested genotypes across
environments highlights the importance of multi-environmental trials for
identifying and selecting superior genotypes [22]. The presence of a
crossover interaction necessitates the consideration of both genotype (G)
and GEI when evaluating and selecting wheat genotypes for grain yield.
This aligns with previous research [23,24], which demonstrated through
GGE-biplot analysis the significance of G+GE on the yield performance of
the tested genotypes. The GGE-biplot accounted for 70.04% of the total
G+GE variation.

Previous research has employed AMMI 1 and AMMI 2 biplots to
explore and evaluate the relationship between environment (E),
genotype (G), and GEI. The current study utilized AMMI analysis to
identify four top-performing and stable genotypes for grain yield and
other relevant traits at each of the five test sites. Additionally, AMMI
biplot analysis identified G-180, G-260, G-257 and 242 as high-yielding and
stable genotypes across all test sites. Consequently, these genotypes are
well-suited for inclusion in bread wheat breeding programs aimed at
developing new varieties capable of producing high and consistent grain
yields in environments like those examined in the present study.

AMMI 2 analysis revealed that the first and second interaction
principal component axes (IPCA1 and IPCA2) were highly significant for
all measured traits, with the two principal components together
explaining more than 70% of the variance due to GEI. These findings are
consistent with previous studies [25,26], which emphasized the
importance of GEI in genotype performance across various test locations.
It is advantageous to select testing locations with high IPCA1 and low
IPCA2 scores to discriminate and identify undesirable genotypes [27,28].
The IPCA value obtained in the current study suggests a strong
discriminating ability of Adet-2022 and Dabat-2023 for grain yield. The
AMMI analysis demonstrated that different genotypes exhibited varying
performances in different environments for different traits. These results
underscore the importance of understanding the influence of the
environment on physiological traits and grain yield to develop a
successful plant breeding program, as indicated by previous studies [29].

According to previous research [22], the average-environment
coordination (AEC) perspective of the GGE biplot was found to be an
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effective tool for evaluating genotype performance and stability across
multiple test locations in this study. Similarly, in alignment with earlier
findings [30,31], the arrow of the average environment axis (AEA), which
directs toward genotypes with superior mean performance across test
sites, was employed to identify those closest to the ideal genotype in
terms of both performance and stability. Notably, genotypes G-232, G-216,
and G-212 exhibited both high grain yield and stability, as evidenced by
their positioning along the AEC abscissa with minimal deviation onto the
AEC ordinate.

The present study utilized AMMI and GGE-biplot models to assess the
yield performance and stability of bread wheat genotypes in Ethiopia’s
key wheat-growing locations. Both methods consistently identified G-180
and G-242 as high yielding and stable elite bread wheat genotypes.
However, some discrepancies were observed: GGE-biplot highlighted
G-232, G-216, and G-212 as high-yielding and stable, while AMMI
identified G-260 as among the top performers. These differences stem
from variations in the underlying assumptions of the two analytical
models [6, 30].

CONCLUSIONS

This study demonstrated that the interaction between genotype and
environment significantly influences the performance and stability of
bread wheat genotypes. Consequently, when selecting genotypes for
breeding programs aimed at achieving consistently high grain yields, it is
imperative to consider the impact of genotype-environment interactions.
The findings suggest that selecting genotypes suitable for breeding
adaptable varieties on a broader scale is more effective than focusing on
genotypes for locally adapted varieties. The study underscores the
importance of genetic variability in determining traits of interest, which
is essential for identifying potential parental lines for breeding purposes.
The agronomic traits analyzed exhibited moderate to high heritability,
indicating potential for improvement through selection. The study
identified G-180 and G-242 were the most stable genotypes across
environments, showing consistent performance and low genotype ×
environment interaction in both AMMI and GGE analyses. G-232 and
G-234 are more specific to certain environments and might perform best
in those settings but are less stable across diverse environments. These
genotypes are promising candidates for the development of new varieties
to enhance wheat production and productivity in Ethiopia and other
regions.
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