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ABSTRACT 

Climate change amplifies drought stress, threatening global crop yields 
and highlighting the urgent need for effective soil amendment strategies. 
SAPs are increasingly proposed as soil amendments to improve drought 
resilience, although their agronomic performance across species and trait 
categories remains insufficiently characterized. We systematically 
evaluated three SAP types—one biopolymer-based and two fossil-based—
across 14 morphological, physiological, and biochemical traits in two 
maize and two rapeseed genotypes under controlled drought conditions. 
PCA and a RF-based feature selection identified SFW, PH, and total PFW as 
key responsive traits. However, SAP applications did not significantly 
enhance biomass accumulation or antioxidant activity, with pronounced 
genotype-specific responses, particularly in rapeseed. Fossil-based SAPs 
consistently outperformed the biopolymer-based variant. Our results 
demonstrate that SAP efficacy is species- and genotype-dependent, 
challenging the assumption of its universal benefit under drought. This 
multi-trait, dual-species analysis underscores the need for genotype-
specific SAP strategies and highlights the value of machine learning 
approaches for predicting treatment outcomes. Overall, our findings 
contribute to a more nuanced understanding of SAP–soil–plant 
interactions and support the targeted development of climate-resilient 
agricultural technologies. 
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ABBREVIATIONS 

SAP: superabsorbent polymer; ABG: agrobiogel; SWT: isonem soil water 
trap; TPC: total phenol content; PCA: principal component analysis; RF: 
random forest; SH: shoot height; RL: root length; RFW: root fresh weight; 
SFW: shoot fresh weight; RDW: root dry weight; SDW: shoot dry weight; 
PH: plant height; PFW: plant fresh weight; PDW: plant dry weight; LA: leaf 
area; RA: root area; SWC: shoot water content; RWC: root water content. 

INTRODUCTION 

The rapid acceleration of global warming and climate change presents 
complex challenges to sustainable agriculture, crop protection, and global 
food security [1,2]. The consequences of these phenomena contain both 
abiotic and biotic stresses. Abiotic stresses, including environmental 
factors such as drought, temperature fluctuations, salinity, and heat [1–3], 
can decrease plant production by up to 70% [4]. Among these stressors, 
drought, characterized as a natural phenomenon resulting in insufficient 
water availability for human and ecosystem needs [5,6], significantly 
influences agriculture, leading to potential reductions in plant growth, 
plant health [7,8], and diminished yields [9]. Hence, global efforts to develop 
strategies for improving water use efficiency are intensifying [10]. 

One promising approach to coping with drought stress in agriculture 
involves utilizing innovative materials such as SAPs [11]. SAPs, 
characterized as three-dimensional hydrophilic polymers with a cross-
linked network structure, exhibit the remarkable ability to absorb water 
hundreds to thousands of times their weight [12–14]. Great efforts have 
been made in the last years for the extensive usage of SAPs in agriculture, 
primarily as water and nutrient storage and retention materials, as well 
as additives that improve soil properties for various plant applications 
[14,15]. These polymers might function as a rhizosphere water reservoir, 
leading to drought stress resistance, modifying soil structure, and 
enhancing fertilizer efficiency in the agricultural sector [16–18]. SAPs can 
be classified into two main categories: natural or biopolymer-based and 
chemical/fossil-based. While fossil-based SAPs, so-called synthetic 
polymers that are sodium polyacrylate, suffer from drawbacks such as 
environmental pollution, natural SAPs are derived from polysaccharides 
and polypeptides, including cellulose, starch, agarose, chitosan, and their 
derivatives, which avoid such environmental troubles [19,20]. Despite 
several positive outcomes of applying this material to the soil, there are also 
notable disadvantages. Sepehri et al. [21] suggest that uncertainty exists 
regarding water accessibility for plants when SAPs are utilized. This may 
lead to competition between plants and SAPs for water absorption, 
potentially reducing the amount of water available for plants [22]. 
Moreover, studies by Zhang et al. [23] and Liu et al. [24] have indicated that 
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SAPs can absorb various cations such as Na+, which may subsequently be 
taken up by plants through their roots, potentially affecting plant growth 
dynamics [22]. Furthermore, the water absorption capacity of SAPs is 
influenced by factors such as soil structure, temperature, pH, the soil 
wetting-drying cycle, and mineral elements in the water [11,25]. Therefore, 
it is essential to thoroughly investigate the interaction mechanisms to 
predict the conditions under which SAPs can enhance plant growth and 
drought resistance, as well as negative interference with plant growth by 
the accumulation of cations like Na+. 

Most previous studies have focused on specific phenotypic traits, such 
as the effects of SAPs on physiological attributes, including chlorophyll 
content, PH, leaf number, stem diameter, and fresh and dry weights of 
shoots and roots in tomato [26]. Furthermore, yield and water use efficiency 
in rapeseed and wheat [27,28], and free proline content and total soluble 
sugars in rice leaves [29] have been investigated. Other studies have 
explored grain and straw yields in durum wheat [30] and winter wheat yield 
[31]. Additionally, germination rate and plant growth in wheat and 
cucumber [29], SH, RL, fresh and dry weights in barley [32], stem diameter, 
tuber yield, LA index, and percentage of dry matter in potato [33], as well 
as stem diameter, PH, and shoot and root biomass in spinach [34] have 
been studied. 

Despite the extensive literature on applying SAPs in investigating 
specific plant traits, there is still a need for a comprehensive study. On the 
one hand, such a study should evaluate the overall impact of different SAP 
types on the three key trait groups—morphological, physiological, and 
biochemical. On the other hand, it should systematically explore genotype-
specific responses across different cultivars of major crops such as maize 
and rapeseed, thereby enabling more targeted and efficient applications 
of SAPs in crop improvement strategies. To address this gap, our study 
adopts a novel dual-species approach using maize and rapeseed, enabling a 
comparative analysis of SAP efficacy across different cultivars. By 
integrating machine learning techniques, we aim to identify the most 
responsive traits affected by SAPs, offering a robust, data-driven 
understanding of genotype- and SAP-type-specific interactions. Based on 
these insights, our extensive and systematic analysis could enhance trait-
based selection for breeding programs and contribute to developing 
drought-resilient crops. To this end, we conducted a greenhouse 
experiment to collect the corresponding phenotypical data of 14 traits, 
encompassing all three characteristic groups of rapeseed and maize plants, 
using three different SAPs (one biopolymer-based and two chemical/fossil-
based). Following the experiment, we systematically evaluated trait 
responses by applying two complementary machine learning 
approaches—PCA and RF feature selection. PCA, as an unsupervised 
method, identified major sources of variation and trait co-variation across 
samples, while Boruta-RF, a supervised method, ranked traits by their 
importance in distinguishing between SAP treatments. This integrated 
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approach enabled a comprehensive assessment of both general variability 
and treatment-specific effects. Interestingly, both methods consistently 
identified SFW, PH, and PFW as key indicators of SAP performance across 
species and cultivars, while also revealing species-specific responses—
root and SDW in maize and LA in rapeseed—underscoring the differential 
trait responsiveness to SAPs. Significant differences across rapeseed 
cultivars were observed for most traits under SAP treatments, a pattern not 
consistently evident in maize. Among the SAPs, the biopolymer-based ABG 
generally exhibited lower performance relative to one or both fossil-based 
treatments, except for the traits SWC in rapeseed and RDW in maize. On 
top of that, our findings revealed that SAPs do not exhibit universal 
positive effects, with significant variation observed across treatments and 
control groups. The differential impacts of SAPs on oxidative stress 
responses further emphasized their conditional effectiveness under 
drought stress. 

MATERIALS AND METHODS 

Plant Material and Experiment Design 

The investigation was executed in the glass greenhouse under a 16/8 h 
light/dark cycle at South Westphalia University of Applied Sciences, Soest, 
Germany (51°34′32.09″ N, 8°06′22.28″ E), in the summer and winter of 
2023. The experimental design employed a completely randomized design 
incorporating two variables: 

1. Treatments: in the context of this experiment, three SAPs sourced from 
different companies were employed; (i) SWT (Isonem, Turkey, Lot 
number: 55874) and (ii) MERCK (MERCK, Germany, product number: 
MKCR9032) were applied as chemical/fossil-based amendments at a 
rate of 0.5 g per kg of soil, and (iii) ABG (AgroBiogel GmbH, Austria) was 
utilized as a natural-based SAP at 4 g per kg of soil. The application 
magnitude is determined by recommendations, which are further 
adjusted based on factors such as absorption capacity (1). These 
materials are mixed with the soil at adjusted doses to ensure a uniform 
distribution of SAPs in the soil. 

In addition to investigating the impact of drought stress and the effects 
of SAPs in the experimental setting, two control groups (soil without SAPs) 
were incorporated. The first control group received regular irrigation, 
referred to as the control normal (CN). In the second group, water-stress 
conditions were induced to match the SAP treatment’s water regime, 
referred to as the control stress (CS). 

2. Seed source: Two distinct rapeseed cultivars were sourced from (i) the 
Leibniz Institute of Plant Genetics and Crop Plant Research (Brassica 
napus L. subsp. napus var. napus f. biennis Thell, accession numbers CR 
3261, IPK, Germany) and (ii) the company KWS SAAT SE (cv. ALLBERICH 
KWS, Germany). Two maize cultivars were obtained from reputable 
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sources, including IPK (Zea mays L. subsp. indentata (Sturtev.) Zhuk, 
accession numbers ZEA 3639, spring type, IPK, Germany) and Deutsche 
Saatveredelung AG (cv CLEMENTEEN, S270, DSV, Germany), to ensure 
scientific rigor essential for the experimental design. 

Regarding the absorption capacity (the amount of water, in mL, that 
one gram of SAPs can absorb) required to induce the same stress level in 
plants, it was necessary to verify the theoretical absorption capacity stated 
by the SAP producer in the product details. To do so, five repeated tests 
were conducted (Table 1). The results showed that the absorption capacity 
of MERCK SAP was almost the same as the theoretical capacity claimed by 
the company when using distilled water. In contrast, ABG demonstrated a 
minimum absorption of 10 times the amount of water claimed by the 
company. For SWT, the absorption capacity was 250 mL/g, which was 58% 
less than the theoretical absorption capacity. Since distilled water is 
generally not used in field and greenhouse experiments, we also tested the 
absorption capacity using tap water (commonly used in these 
experiments). The results showed a decrease in the absorption capacity of 
both fossil-based SAPs, with a 49% reduction for MERCK and a 72% 
reduction for SWT compared to the theoretical capacity. This trend was 
different for ABG, where the absorption capacity increased compared to 
distilled water and fell within the range of the theoretical absorption 
capacity. Given that fertilizers are typically used during experiments, it 
was important to assess the absorption capacity when fertilizers were 
applied. The absorption capacity decreased by more than 62% for MERCK 
and 80% for SWT when water was combined with fertilizer (NPK). For the 
natural-based SAP, we reached the maximum absorption capacity when 
using fertilizer. These results indicate that SAPs interact with water’s 
mineral content and the fertilizer’s cations and anions. The amount of 
SAPs used in this experiment was based on the recommended dosage, 
taking into account the results from this analysis. 

Table 1. Water absorption capacity of SAPs with varying water sources and fertilizers. 

SAPs 
C 

(mL/g) 
Water Sources Capacity (mL/g) 

Distilled Tap Tap + Fertilizer (NPK) 
MERCK 500 470 (−6%) 290 (−49%) 180 (−62%) 

SWT 600 250 (−58%) 170 (−72%) 120 (−80%) 
ABG 10–40 10 (minimum) 15 40 (maximum) 

To ensure uniform stress levels across all plants, soil moisture was 
continuously monitored using the TEK-255G Indoor Outdoor Soil Moisture 
Meter, Tekcoplus Ltd, China. The monitoring continued until 
approximately 50% of the plants in the dry-level irrigation treatment 
(moisture level 3) exhibited relative wilting. Based on pre-tests, which 
accounted for soil texture, average greenhouse temperature, and pot size, 
a standardized 200 cc of water was administered to each pot for the 
rapeseed experiment. In contrast, the control group received regular 
irrigation to prevent drought stress. In the maize experiment, 500 cc of 
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water was provided for each pot. To systematically study the effects of 
SAPs on both plant species, 14 distinct traits were measured and 
categorized into three groups (Figure 1). The first group consists of 
morphological characteristics, including SH, RL, RFW, SFW, RDW, SDW, 
PH, PFW, PDW, LA, and RA. The second group comprises physiological traits, 
namely SWC and RWC, along with the third group as biochemical trait, which 
is TPC. Measurements were taken using a ruler to measure traits related 
to length and height (measured in centimeters). Weights (measured in 
grams) were determined using a scale (Sartorius TE214S, Germany). The 
fresh organs were then dried in an oven at 70 °C for 72 h to measure dry 
weights [35–37]. SWC and RWC were calculated using the formula 1 [38]: 

WC = [(FW − DW)/FW] × 100% (1) 
Where WC, in percentage, refers to water content, FW denotes fresh weight, 
and DW represents the dry weight of the shoot or root part. 

 

Figure 1. Schematic representation of the plant species and their 14 traits, categorized by phenotype groups. 
Traits are measured from various plant tissues, with color coding indicating their respective groups. 

A total of 150 pots were prepared for each plant species (maize and 
rapeseed), providing fifteen replicates for every treatment level, including 
the two control conditions (CN and CS). For the assessment of 
morphological and physiological traits, we analyzed 120 pots per species, 
corresponding to twelve independent replicates of each variety under 
every treatment and control condition. For the biochemical determination 
of antioxidant capacity, we further selected 30 pots per species, 
representing three replicates for each treatment-variety combination, 
controls included. This tiered sampling scheme ensured adequate 
statistical power for the overall experiment while keeping the workload 
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manageable for the labor-intensive phenotypic and biochemical analyses. 
A standardized soil mixture was prepared to ensure optimal plant growth 
conditions. The soil composition consisted of 30% sandy soil mixed with 70% 
peat moss. The sandy soil was sterilized in an autoclave for 90 min at 120 °C. 
The pH of peat moss was 5.8–6.8, and the soil consisted of 340 mg/L Nitrogen 
(N), 260 mg/L phosphate (P2O5), 330 mg/L (K2O, Potassium, and 100 mg/L 
magnesium (Mg). Each pot (12 cm × 12 cm × 12 cm) was filled with 1.5 kg of 
the soil blend, with one seed sown per pot for rapeseed. For maize, each 
pot (20 cm × 18 cm × 20 cm) was filled with 5 kg of the soil blend. 

Antioxidant Extraction: TPC Determination 

One gram of gallic acid was dissolved in 100 mL of methanol, resulting 
in a 1 % gallic acid solution (10 mg/mL) designated as the standard solution. 
To construct a standard gallic acid curve, dilutions (0.1, 0.2, 0.4, 0.6, 0.8, 
and 1 mg/mL) were prepared in methanol from the first standard solution 
(Solution 1). Each dilution (0.1 mL) was mixed successively with 0.5 mL of 
water and 0.1 mL of Folin-Ciocalteu reagent, followed by a 6 min 
incubation period. Subsequently, 1 mL of sodium hydroxide 1% and 0.5 mL 
of distilled water were introduced to the reaction mixture. The absorbance 
was recorded spectrometrically after 90 min at 760 nm (UV-1800 
spectrophotometer, Shimadzu, Duisburg, Germany) [39]. Utilizing the 
standard gallic acid curve and regression equation, the total phenolic 
content of the extracts was calculated based on y = 0.0352 + 3.2098x (𝑅2 = 
0.9976), where y is the absorbance and x is the concentration of dilutions, 
as shown in Figure 2. 

 

Figure 2. Standard curve of gallic acid: Calibration curve to measure the TPC concentration in plant samples. 
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The TPC is extracted from plant samples by the following procedure: 200 
mg of true leaves were immersed in liquid nitrogen for 3 min, followed by 
mechanical milling for 10 min at 25,000 rpm (Retsch Mixer Mill MM200, 
Haan, Germany). The resulting milled sample was then transferred into a 
centrifuge tube, and methanol (3 × 1 mL) was added. Subsequently, 
centrifugation was conducted at 5000 rpm and 4 °C for 5 min (Rotina 380R, 
Hettich, Kirchlengern, Germany) after each methanol addition. A mixture 
was prepared by combining 0.5 mL of deionized water, 0.5 mL of Folin-
Ciocalteu, and 0.5 mL of the sample for 30 s. Then, 5 mL of 1% sodium 
hydroxide was added, and the mixture was vortexed. The resulting 
solution was then incubated precisely for 30 min, after which its 
absorbance was measured at 𝜆 = 760 nm using a UV spectrophotometric 
device (UV-1800 spectrophotometer, Shimadzu, Duisburg, Germany) [39]. 

Quantification and Statistical Analyses 

Data are primarily depicted as box plots, with mean values shown by 
crosses and individual data points overlaid. The analyses were conducted 
using R software (version 4.2.3 [40]). To assess significant differences 
between groups (both treatment groups and cultivar groups), we applied 
either a one-way ANOVA with Tukey’s test as post hoc test or the Kruskal-
Wallis test followed by Dunn’s test as post hoc test, depending on the 
normality of the data distribution which was assessed using the Shapiro-
Wilk test [41]. The significance threshold for all analyses was established 
at α = 0.05. 

Furthermore, two specific traits, LA and RA, were quantified using 
image analysis. Images were captured using a Nikon camera (Nikon D5100 
+ AF-S DX Nikkor, Bangkok, Thailand), and measurements were obtained 
using the ImageJ software (Version 1.54d) [42,43]. Additionally, a custom 
Python script and the LeafArea package (Version 0.1.8) [44] in R were 
utilized to further analyze and process the obtained data. Phenotypic 
correlations were calculated based on the Pearson correlation coefficient 
(r) between each pair of quantitative traits to assess their relationships in 
both plant species. In Figure 3, a sample of the image analysis results for 
both plants is shown. This figure highlights the differences in root 
architecture between maize, which has a fibrous root system with several 
main primary roots, and rapeseed, which features a taproot system with 
one main primary root and several lateral roots. Additionally, the figure 
illustrates the impact of the treatments, showing how the SAP application 
affects LA, RA, and, consequently, the fresh and dry biomass weight. 
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Figure 3. RA and LA for both plant species. Binary images of RA and LA for (A) maize and (B) rapeseed, 
which were used to calculate RA and LA. In (A) and (B), the upper panels display the root architecture of 
each species, while the lower panels show the corresponding LA. These images illustrate the variations in 
root and leaf morphology between maize and rapeseed under different treatments. 

The systematic assessment of these traits based on their potential for 
SAP application is crucial for guiding further investigations, especially 
when selecting target phenotypes (traits) for breeding programs. To this 
end, we applied two machine learning methods: PCA, (R packages: 
factoextra [45] and gridExtra [46]), the RF, along with the Boruta algorithm 
[47] to investigate the importance of traits influenced by the SAP 
application. As an unsupervised learning method, PCA was performed to 
reduce the dimensionality of the complex datasets while preserving 
variance, thus enabling the identification of key traits by assessing their 
contributions to the principal components. This method is used to identify 
key variables that contribute to the observed phenotypes [48]. 

The RF algorithm, a supervised learning method, was employed to 
estimate the relative importance of each trait in predicting response 
variables, which in this case were the SAP treatments and two control 
groups. To enhance feature selection, we applied the Boruta algorithm [47], 
a specialized wrapper tailored for feature selection using the RF 
framework. The algorithm works by augmenting the dataset with additional 
random attributes, called shadow attributes, created by shuffling the 
original trait values. This process introduces controlled randomness, 
reducing biases from false signals caused by random fluctuations or 
spurious correlations in the data. An RF classifier is then employed on the 
extended dataset to evaluate the importance of each trait. Traits with 
importance scores significantly lower than those of the shadow attributes 
are iteratively removed. By repeatedly generating shadow attributes and 
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applying the RF classifier, the Boruta algorithm assigns important scores to 
all traits. Ultimately, it ranks the traits and classifies them as confirmed, 
rejected, or tentative based on their importance [49,50]. 

RESULTS 

With the growing challenges posed by climate change, developing 
innovative agricultural solutions, such as SAPs, has become increasingly 
critical to enhance crop resilience. Despite their potential, the impact of 
different SAPs on key plant traits and their specific role in plant 
development remain poorly understood. In this study, we systematically 
evaluated 14 traits in maize and rapeseed to investigate the impact of SAP 
application on both crops. Through comparative analyses, our findings 
provide novel insights into the potential of these traits to mitigate climate-
related stresses and improve crop productivity. 

Assignment of the Importance of Individual Traits 

Understanding which plant traits are most influenced by SAP 
application is essential for guiding future breeding programs and 
enhancing crop performance. While several studies [51–53] have 
demonstrated the potential of SAPs to improve plant yield and trait 
development, a more holistic approach is required to rank these traits and 
clarify their roles in SAP-driven improvements. To address this, we first 
applied the RF approach, utilizing the Boruta algorithm, to the datasets 
from maize and rapeseed. This analysis identified five traits—SFW, PH, 
SDW, PFW, and PDW—in maize and five traits—PFW, SFW, PH, LA, and 
RL—in rapeseed as important for predicting the response variables 
(treatments: SAPs and both control groups) (Figure 4A,B). 

Moreover, PCA analysis further highlighted the most important traits in 
both datasets based on their contributions to the principal components. For 
maize, the traits PDW, SDW, PFW, SFW, PH, RL, RDW, and LA were 
identified as key contributors (Figure 4C). Similarly, for rapeseed, the traits 
PDW, PFW, SFW, SDW, RFW, LA, RDW, RA, and PH were deemed most 
important (Figure 4D). Interestingly, among the important traits, SFW, PH, 
PFW, PDW, and SDW in maize and PFW, SFW, PH, and LA in rapeseed were 
identified as common traits by both methods. This highlights their high 
relevance within the datasets, representing key traits for SAP applications 
in each plant species. 

A closer look at these traits assigned as important by RF or PCA for both 
maize and rapeseed suggests that, regardless of the machine learning 
approach used, the traits PH, PFW, and SFW consistently play a crucial role 
in characterizing the effects of the SAP application. This indicates that 
these traits exhibit reliable and consistent behavior across different plant 
species under drought stress conditions when SAPs are applied. In this 
regard, the importance of PFW and SFW could be explained by their 
biological relevance in determining overall plant biomass and their strong 
association, as shown in the section “Analysis of Associations between 
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Quantitative Traits”. This finding aligns with our expectations, reinforcing 
the idea that changes in one trait often correspond to changes in the other. 
Additionally, the traits commonly identified by RF and PCA revealed 
species-specific patterns; RDW and SDW were exclusive to maize, whereas 
LA was unique to rapeseed. These findings indicate that SAPs affect some 
traits similarly across species while also eliciting distinct responses 
depending on the plant type. 

 

Figure 4. Importance of individual traits. Boruta analysis of trait importance for maize (A) and rapeseed (B), 
where green and red boxes indicate confirmed and rejected trait importance, respectively. The blue boxes 
refer to shadow features (max, min, and mean) which are generated by permuting the original values, 
providing a baseline for identifying important traits. PCA-based trait importance for maize (C) and rapeseed 
(D), with traits above the red dashed line (mean importance) regarded as important. 

Phenotype Analysis 

The application of machine learning methods revealed three traits—
SFW, PFW, and PH—as important in both maize and rapeseed. To assess 
the impact of SAP application and drought stress, we focus on a detailed 
analysis of these traits. Due to the strong correlation between SFW and PFW 
(r = 1.00) in both plant species (See Section Analysis of Associations 
between Quantitative Traits), the analysis primarily concentrates on SFW 
and PH. Further results for the remaining traits are provided in 
Supplementary Material Figures. 

SFW 

The water deficit in plants typically appears as a decrease in shoot 
weight, especially in fresh weight, which in turn affects the overall 
dynamics of shoot growth. As a result, changes in SFW serve as a reliable 
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indicator of a plant’s response to drought stress. The results indicate 
distinct responses to treatments between maize and rapeseed regarding 
SFW. In maize (Figure 5A), a significant reduction in SFW was observed in 
all SAP and CS treatments compared to the CN, suggesting that the 
application of SAPs did not enhance shoot biomass under the tested 
conditions. For rapeseed, as shown in Figure 5B, the only significant 
difference was between MERCK and CN, where the MERCK treatment 
resulted in lower SFW compared to the control. Other SAP treatments did 
not show significant differences from the control, indicating that rapeseed 
was generally less responsive to SAP applications in terms of SFW. When 
comparing cultivars across species (Figure 5C), no significant differences 
were found between maize cultivars in any treatment, indicating that SAPs 
had a uniform effect on maize regardless of variety. In contrast, significant 
differences were observed between rapeseed cultivars for all treatments, 
suggesting that genetic background played a crucial role in determining 
SFW in rapeseed. These findings highlight species-specific and cultivar-
specific responses to SAP applications. 

 

Figure 5. SFW analysis. Box plots depict SFW in maize (A), rapeseed (B), and cultivar comparisons across 
both plant species (C). Panels A and B depict treatment effects (treatments: SAPs and both control groups) 
independent of cultivar differences, while panel C illustrates the influence of cultivar on treatment outcomes 
Statistical analysis was performed using the Kruskal-Wallis test, followed by Dunn’s test for post hoc 
pairwise comparisons. The symbol ‘ns’ denotes no significant difference between comparison pairs, and ‘*’ 
indicates significant differences at α = 0.05. The ‘×’ symbol represents the mean value for each treatment. In 
panel C, the colors represent the following genotypes: orange color stands for the maize genotype provided 
by DSV company, blue color stands for the maize genotype from IPK, green color stands for rapeseed 
genotype provided by IPK, and red color stands for the rapeseed genotype from KWS company. 
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In conditions of limited water availability, plants often exhibit 
diminished vertical growth, reducing overall PH. In maize (Figure 6A), PH 
was significantly lower in all stress situations, including SAP treatments and 
CS group (ABG, MERCK, SWT, and CS) compared to the well-watered 
control (CN), indicating that drought stress, despite of SAP application, 
negatively affected growth. However, SAPs did not alleviate this effect, as 
no statistically significant differences were observed among the stress-
treated groups. In rapeseed (Figure 6B), a significant reduction in PH was 
observed only in the ABG treatment compared to both control groups (CN 
and CS), whereas MERCK and SWT showed no significant differences, 
suggesting minimal impact on PH. Regarding cultivar comparisons (Figure 
6C), a significant difference between maize cultivars was detected only 
under CN, while both cultivars responded similarly under stress 
conditions. In rapeseed, cultivar differences were significant in all 
treatments except ABG, highlighting a more pronounced cultivar effect 
under SAP treatments. Overall, maize PH was highly sensitive to drought 
stress, with all stress treatments leading to a significant reduction in height 
compared to normal conditions, and SAPs failing to mitigate this decline. 
In rapeseed, ABG negatively affected PH, whereas other SAP treatments 
had no significant impact. Cultivar effects were more pronounced in 
rapeseed, whereas in maize, differences were only evident under well-
watered conditions. 

 

Figure 6. PH analysis. Box plots display PH in maize (A), rapeseed (B), and cultivar comparisons across both 
plant species (C). Panels A and B depict treatment effects (treatments: SAPs and both control groups) 
independent of cultivar differences, while panel C illustrates the influence of cultivar on treatment outcomes. 
For the maize plots, statistical analysis was performed using the Kruskal–Wallis test, followed by Dunn’s test for 
post hoc pairwise comparisons. Statistical analysis for rapeseed was conducted using one-way ANOVA, 
followed by Tukey’s test for post hoc pairwise comparisons. The symbol ‘ns’ denotes no significant difference 
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between comparison pairs, and ‘*’ indicates significant differences at α = 0.05. The ‘×’ symbol represents the 
mean value for each treatment. In panel C, the colors represent the following genotypes: orange color stands 
for the maize genotype provided by DSV company, blue color stands for the maize genotype from IPK, green 
color stands for rapeseed genotype provided by IPK, and red color stands for the rapeseed genotype from 
KWS company. 

TPC Analysis 

TPC was determined using the calibration curve (See Antioxidant 
extraction: TPC determination) and expressed in mg/mL gallic acid 
equivalent. In maize, no significant differences in TPC were observed 
between SAP treatments (ABG, MERCK, SWT) and CN (Figure 7A). While 
the SAP treatments, especially those with MERCK, showed a slight decrease 
in TPC under drought stress conditions compared to the two control 
groups, these differences were not statistically significant. However, in 
rapeseed, a distinct response was observed (Figure 7B), where TPC levels 
were significantly higher in the ABG compared to CN, suggesting that the 
natural-based SAP (ABG) promoted phenolic accumulation. In contrast, 
MERCK and SWT treatments did not significantly differ from CN, 
indicating that these SAPs had no substantial effect on TPC synthesis. Plants 
are required to adjust to fluctuations caused by abiotic factors. The 
accumulation of phenolic compounds in plant tissues is believed to be an 
adaptive mechanism in response to these adverse environmental 
conditions. The increase in TPC under stress conditions reinforces the well-
documented role of drought stress in stimulating secondary metabolite 
production, a common physiological response linked to enhanced 
antioxidative defense mechanisms in plants [54]. Conversely, a decrease 
in TPC in the treatments indicates that the plants are experiencing less 
stress. 

 

Figure 7. TPC analysis. The effects of treatments and control groups on TPC in maize (A), and rapeseed (B). For 
maize, statistical analysis was performed using one-way ANOVA, followed by Tukey’s test for post hoc 
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pairwise comparisons. Statistical analysis for rapeseed was conducted using the Kruskal-Wallis test, followed by 
Dunn’s test for post hoc pairwise comparisons. The symbol ‘ns’ denotes no significant difference between 
comparison pairs, and ‘*’ indicates significant differences at α = 0.05. The ‘×’ symbol represents the mean value 
for each treatment. 

Analysis of Associations between Quantitative Traits 

We analyzed the data using the Pearson correlation coefficient (r) to 
assess the strength of relationships among the quantitative traits of both 
plants, combining data from both control groups and SAP treatments. As 
illustrated in Figure 8, the results revealed a consistent positive correlation 
among most of the traits examined. However, physiological traits RWC and 
SWC showed negative correlation coefficients with the other traits, 
distinguishing them from the overall trend. Notably, the correlation values 
indicate particularly strong associations between specific trait pairs. For 
instance, a strong positive correlation was observed between RA and PFW, 
with coefficients of 0.75 in maize and 0.82 in rapeseed. Similarly, the 
relationship between RDW and SDW exhibited high correlation 
coefficients of 0.91 in maize and 0.81 in rapeseed, underlining the tight 
association between these traits. Moreover, LA exhibited a strong positive 
correlation with RA, with coefficients of 0.82 in rapeseed and 0.73 in maize. 
Similarly, LA was strongly correlated with RFW, with correlation 
coefficients of 0.82 in maize and 0.71 in rapeseed, further highlighting the 
interdependence among key phenotypic traits. Interestingly, particular 
trait correlations, such as those between PFW and LA (r = 0.91), as well as 
SFW and PH (r = 0.80), were identical across both plant species. This 
consistency indicates that the SAP application does not alter the inherent 
relationships between these traits. 
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Figure 8. Correlation heatmap across traits. Correlation heatmap for maize (A) and rapeseed (B), where the 
intensity of blue and red indicates the strength of positive and negative correlations, respectively. 

DISCUSSION 

Plants deploy diverse physiological and biochemical mechanisms to 
cope with environmental stressors, including biotic and abiotic challenges 
[9]. Among these, drought stress has been extensively studied due to its 
detrimental impact on plant growth, morphology, and biochemical 
processes, ultimately resulting in substantial yield losses [55–60]. In this 
context, SAPs have emerged as promising tools for alleviating drought-
induced stress. Several studies have discussed that SAPs could partially 
mitigate the adverse effects of water scarcity by improving water 
availability and enhancing plant stress tolerance. Regarding the effects of 
SAPs, previous studies can be roughly categorized into two main groups: (i) 
those reporting beneficial impacts on plant performance under drought 
stress, and (ii) those indicating neutral or even negative effects, 
highlighting the context-dependent nature of SAP efficacy. Among the 
documented benefits, SAPs have been shown to improve soil structure [61], 
enhance water retention [62,63], and enable slow-release behavior [64–66] 
when applied to soil. These improvements have translated into enhanced 
physiological parameters in various crops, such as increased germination 
rates, improved plant growth [17,67,68], root system development [6,69], 
larger LA [70], higher oil content [29], and greater yield and biomass in 
several crops and vegetables [71–74]. Conversely, other studies have 
identified notable limitations associated with SAP applications. These 
include competition for water between SAPs and plant roots [21], the 
release of sodium ions, and disruptive cation interactions in the soil [23,25]. 
However, these studies from both groups were typically restricted to a 
single plant species, examined a narrow range of phenotypic traits, and 
frequently involved only one SAP type, limiting their generalizability 
across crop types and environmental conditions. 

To broaden the understanding of SAP performance beyond these 
limitations, we investigated two physiologically distinct crop species—
maize (a monocot with a fibrous root system) and rapeseed (a dicot with a 
taproot system)—which differ in their root architecture, water uptake 
dynamics, and stress adaptation mechanisms. We employed a 
comprehensive phenotyping approach encompassing a wide range of 
morphological, physiological, and biochemical traits measured at the 
whole-plant level and the level of individual plant parts. This design 
allowed us to capture both general and species-specific responses to SAP 
treatments. Additionally, by including two genetically diverse cultivars per 
species, we revealed genotype-dependent variation in SAP efficacy, 
underlining the importance of intraspecific diversity in shaping treatment 
outcomes. Finally, the parallel evaluation of natural (biopolymer-based) 
and synthetic (fossil-based) SAPs under identical controlled drought 
conditions enabled a direct comparison of their functional effects, 
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providing novel insights into their respective benefits and limitations. This 
integrative framework contributes to a more nuanced and generalizable 
understanding of SAP-plant interactions, with potential implications for 
future crop management and breeding strategies under water-limited 
conditions. 

Our findings agree with previous reports by Akram et al. [75], who 
reported a decline in growth-related traits, including shoot and root fresh 
and dry weight, as well as total phenolic content, under drought conditions. 
Similarly, reductions in LA observed in our study align with prior 
investigations [76–79]. Moreover, Rafique et al. [80] documented a decline 
in plant fresh and dry biomass, with lower values under drought stress 
compared to control conditions, further confirming the impact of water 
deficit on plant growth. In our study, the observed decrease in biomass, 
reflected by significant reductions in SDW, RDW, SFW, and RFW, and 
consequently in PDW and PFW, is consistent with their findings and 
highlights the suppressive effect of drought on plant biomass 
accumulation. Notably, a significant reduction in maize biomass across all 
SAP treatments, as well as in the MERCK treatment for rapeseed, indicates 
that the SAPs, including the fossil-based MERCK, were insufficient to 
protect plants against drought-induced biomass loss under the tested 
conditions. The lack of significant improvement in most assessed traits 
following SAP application, coupled with an increase in antioxidant activity, 
reinforces the conclusion that SAPs did not effectively mitigate drought-
induced oxidative stress. Overall, these results suggest that the detrimental 
effects of drought stress outweighed any potential positive effects of SAP 
treatments in both species. 

Our findings regarding these traits concur with previous studies, 
which reported reductions in RL, SH, and PH were evident under drought 
stress, aligning with previous observations in rapeseed [81–84] and maize 
[85–87]. Furthermore, Rao et al. [88] demonstrated that barley cultivars 
exhibited significant differences in phenolic content and antioxidant 
production, a trend that was also observed in this study, particularly in 
rapeseed. Water deficit conditions have been shown to impair 
photosynthetic efficiency significantly [89,90]. Under such conditions, 
rapeseed has been reported to reduce leaf biomass by up to 34% [91] and 
decrease LA [92,93] as an adaptive strategy to minimize water loss via 
stomatal regulation. This effect was similarly observed in the present 
study. Drought-induced modifications in root structure and growth 
patterns have also been reported [89], and our results suggest that, despite 
SAP application, plants exhibited a stress response comparable to those 
observed in previous studies without SAP treatments. This suggests that 
SAPs had a limited effect on improving drought tolerance for the evaluated 
morphological traits under the tested conditions. 

Plants exposed to abiotic stress, such as drought, experience oxidative 
stress primarily due to the excessive accumulation of reactive oxygen 
species (ROS), leading to lipid peroxidation, protein oxidation, and 
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disruptions in cellular redox homeostasis [89]. To mitigate ROS-induced 
cellular damage, plants activate antioxidative defense mechanisms in 
which phenolic compounds and flavonoids serve as crucial non-enzymatic 
antioxidants, directly scavenging ROS and maintaining redox balance [94]. 
Consistent with these protective responses, Ayyaz et al. [95] reported 
enhanced antioxidant production in drought-stressed rapeseed, and 
Zhang et al. [96] observed elevated TPC in maize kernels under drought 
conditions. In accordance with these findings, our study revealed an 
increase in TPC under drought conditions in rapeseed. However, despite 
SAP applications, no significant reduction in TPC levels was observed, 
suggesting that SAPs did not sufficiently alleviate oxidative stress or 
suppress ROS accumulation in rapeseed. The persistent elevation of TPC 
under ABG treatment likely reflects ongoing activation of phenolic-based 
antioxidant defenses, indicating that the drought-induced oxidative stress 
was not fully mitigated. This may be attributed to species-specific responses, 
as rapeseed, a dicot with a deep taproot system, may sustain stronger 
oxidative signaling and phenolic metabolism even under marginal 
improvements in water availability. Moreover, limited SAP effectiveness 
could be associated with differences in polymer composition, ion 
exchange behavior, and restricted water release dynamics in the 
greenhouse environment. Interestingly, in maize, a decrease in TPC was 
observed under the MERCK treatment compared to the controls. This 
suggests that the MERCK SAP, possibly through improved osmotic regulation 
and water availability, was more effective in reducing ROS generation and 
oxidative stress in maize. Given the fibrous root system and differing stress 
adaptation mechanisms of maize, the species may have benefited more 
efficiently from SAP-mediated water retention. Furthermore, fossil-based 
SAPs like MERCK may interact differently with soil ions, supporting a 
better hydration status and thereby suppressing ROS-triggered phenolic 
accumulation. This finding highlights the potential of the MERCK SAP 
formulation as a promising strategy for oxidative stress mitigation in maize 
under drought conditions, warranting further investigation into its 
species-specific mechanisms of action. 

The efficiency of SAPs is modulated by environmental and soil 
conditions, which can affect their water retention capacity and overall 
performance. More et al. [97] reported that SAP absorption capacity is 
strongly affected by factors such as pH, water type, and soil composition. 
Furthermore, Abdallah et al. [98] suggested that small-particle SAPs may 
limit plant access to stored water, which may explain the limited effects 
observed in this study. 

In addition, SAP performance is influenced by cation interactions in the 
soil. Prior research has demonstrated that different ions affect SAP 
absorption efficiency, following the trend: K2+ > Na2+ > NH4+ > Al3+ > Fe3+ > 
Mg2+ > Ca2+ [23,24]. Kaur et al. [11] found that dissolved mineral 
compounds reduce SAP water retention capacity due to interactions with 
soil ions, leading to increased Na+ absorption by roots, which can inhibit 
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plant growth [23]. Furthermore, Situ et al. [26] demonstrated that cation 
exchange between potassium- and sodium-based SAPs can result in 
excessive accumulation of Na+ and K+, reducing root biomass, length, and 
area, while also causing deficiencies in Ca2+ and Mg2+, further impairing 
plant development. The results of the absorption capacity 1 investigation 
align with these findings, showing that there is an interaction between the 
applied SAPs and the water mineral content, as well as the cations and 
anions in the fertilizer. This interaction affects the efficiency of these 
materials under drought stress conditions. 

CONCLUSIONS 

This study provides a comprehensive evaluation of the effects of SAP 
application on morphological, physiological, and biochemical traits in 
rapeseed and maize under controlled drought stress. Despite prior reports 
suggesting agronomic benefits, our results demonstrate that SAPs confer 
limited mitigation of drought- induced stress responses, with substantial 
variability across species and genotypes. SAP treatment did not consistently 
enhance biomass production or antioxidant capacity. The pronounced 
genotype-specific variation underscores the necessity of incorporating 
genetic background as a critical factor when assessing SAP efficacy. Broad, 
non-specific use of SAPs is unlikely to yield predictable benefits across 
diverse environmental conditions. The limited effect on antioxidative 
responses further highlights the inadequacy of current SAP formulations 
in influencing key drought-adaptive physiological pathways. The 
interactions between SAPs, soil properties, and plant physiological 
processes re- main insufficiently understood. Future investigations should 
integrate detailed soil chemistry, polymer material science, and high-
resolution plant phenotyping to characterize these relationships better. 
Alternative application strategies, such as seed coating, should be explored 
to improve SAP effectiveness while minimizing unintended physiological 
costs. Aligning SAP technologies with genotype-specific breeding 
programs and precision water management may offer more effective 
solutions. This study establishes a data-driven framework for identifying 
phenotypic markers associated with SAP responsiveness by applying 
machine learning approaches for trait prioritization. However, the 
findings also emphasize that substantial innovation in material 
composition, application strategies, and genotype-specific optimization is 
essential before SAPs can be reliably integrated into sustainable drought-
resilience efforts. An additional aspect not discussed in this analysis but 
worthy of investigation in future research is the degradability of the 
material and its potential toxicological implications upon soil application, 
especially concerning its interaction with soil microbiota. Moreover, 
translating these insights from controlled environments to field conditions 
remains critical for future application. 
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SUPPLEMENTARY MATERIALS 

The following supplementary materials are available online, Figure S1: 
Shoot height analysis, Figure S2: Root length analysis, Figure S3: Leaf area 
analysis, Figure S4: Root area analysis, Figure S5: Plant dry weight analysis, 
Figure S6: Plant fresh weight analysis, Figure S7: Root fresh weight 
analysis, Figure S8: Root dry weight analysis, Figure S9: Shoot dry weight 
analysis, Figure S10: Root water content analysis, Figure S11: Shoot water 
content analysis, which correspond to the phenotypes described in the 
“Phenotype Analysis” section. 
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