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ABSTRACT

Late blight is a disease responsible for major losses to the potato industry
and breeding new resistant varieties is a sustainable way to fight late
blight and reduce the need for chemical treatments. This study aimed at
understanding the genetic basis of late blight resistance in a commercial
population of potatoes. Historical records from a large breeding program
were used. Different statistical models were evaluated to determine the
contribution of additive genetic variance, non-additive genetic variance,
and genotype-by-decade of testing interaction variance to the total
phenotypic variance. GWAS were conducted to identify genomic regions
associated with late blight resistance and the part of the additive genetic
variance explained by these regions were estimated. Breeding values for
resistance toward late blight were predicted using four different modeling
approaches. In the two last models the most significant SNP of significant
genomic regions were included as fixed effects. Predictive ability was
assessed using five-fold cross-validation by correlating corrected
phenotypes or breeding values predicted using all data with those
predicted without the phenotypes in the validation populations. Results
showed that late blight resistance was highly heritable and that the
contribution of the genotype-by-decade interaction was significant,
indicating differential resistance toward different late blight strains
dominating in each decade. Three genomic regions significantly affecting
late blight resistance explained only 13% of the total additive genetic
variance in resistance. Genomic breeding values (GEBV) showed high
predictive ability suggesting that genetic or genomic selection could be an
effective tool to develop new late blight resistant varieties. A strategy
combining genomic selection and including knowledge on genomic
regions associated with resistance is advantageous.

KEYWORDS: Phytophthora infestans; tetraploid potatoes; resistance genes;
host pathogen coevolution; genomic selection

Crop Breed Genet Genom. 2026;8(1):e260001. https://doi.org/10.20900/cbgg20260001


https://doi.org/10.20900/cbgg20260001
https://cbgg.hapres.com/

Crop Breeding, Genetics and Genomics 2 of 20

ABBREVIATIONS

LB, Late Blight; Rgene, gene of resistance; Pi, Phytophthora infestans; AVR,
avirulence gene.

INTRODUCTION

Late blight (LB) is one of the most devastating diseases in potatoes,
tomatoes, and tobacco. It is caused by an oomycete called Phytophthora
infestans (Pi), which can attack all parts of the plant. An infection by this
pathogen can result in complete destruction of the plant in a few days. Pi
originated from Peru and Mexico and was most likely introduced to
Europe in the mid XIXth century along with contaminated potatoes
imported from North America in order to fight another disease.
Subsequently, LB was partially the cause of the famine in Europe in the
XIXth century, that in particular hit Ireland [1]. From this point, massive
efforts were conducted to fight LB, going from the development of
fungicides, management recommendations, and development of resistant
lines through screening for natural resistance in established potato
varieties as well as in wild potatoes [1]. The consequences of LB and of the
control measures taken were in 2009 estimated to cost €9 billion
worldwide [2]. This cost included the loss due to LB contamination, the cost
of the fungicides and many other factors such as the societal cost,
including for example the impact on human health. While having an
important cost, the use of fungicides is widely preponderant to fight LB. In
2016 in the Netherlands, the amounts of fungicides used against LB
represented 50% of the total amount of pesticides used [3]. Besides their
economic and societal costs, with time, some fungicides became inefficient
as Pi evolved to become resistant to the treatments. One of the latest
examples is the LB genotype EU43 which to is resistant to mandipropamid
[4].

Another way to fight LB is by establishing new genetic resistance.
Following the mid-XIXth century crisis, intensive work was done
especially in the early XXth century to identify wild potatoes which were
resistant to LB and the genes responsible for this resistance [5]. It is
assumed that the resistance of a host to a pathogen relies on the
interaction of a gene of resistance (Rgene) expressed in the host and an
avirulence gene (AVR gene) expressed in the pathogen [6]. Those two genes
presumably co-evolved simultaneously and, therefore, the plants and the
pathogens carrying the matching pairs of Rgenes and AVR genes originate
from the same geographic regions. This phenomenon is the reason why
primary sources of resistance to Pi were searched for in wild populations
of Solanum spp. in South America and Mexico. Over 70 genes of resistance
to Pi has now been recognized as identified in wild Solanum species and
as well as some in cultivated potatoes Solanum tuberosum [7,8]. This has
led to the development of varieties showing higher resistance. However,
here again, because of its ability to evolve, Pi can escape the resistance
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conveyed by incorporated Rgenes. Indeed, the introgression of eleven
dominant resistant genes first identified in Solanum demissum L. (R1-R11)
did not lead to long term resistance to Pi [9]. Moreover, while some
resistance genes such as Rpi-blb3 [10] or the Rpi2 locus [11] confer
resistance toward a large spectrum of pathotypes while others such as R3a,
R3b, R6 and R7 [12,13] confer a resistance only to specific pathotypes. One
of the strategies proposed to slow down the ability of the pathogen to
escape resistance is to stack several Rgenes in one cultivar [14]. However,
such R-genes need a broad spectrum of resistance in order to ensure long
term resistance. Introgression of two or three resistance genes through
traditional breeding is a lengthy process. It took half a century to get two
new varieties of S. tuberosum carrying Rpi-blb2 coming initially from S.
bulbocastanum [3]. The difficulty in introgression also depends on the
endosperm balance number (EBN) that determines the ease of crossing
related potato species. Different methods such as hybrid breeding and
genetic engineering could be used to stack Rgenes more efficiently in
cultivated potato. Some studies have used such technologies and were able
to stack up to 4 Rgenes into S. tuberosum [3,15-17], leading to plants being
highly resistant to LB. In theory, if a single clone carried the advantageous
allele for four R-genes, it would be nearly impossible for the pathogen to
overcome this resistance [18]. However, this relies on prerequisites such
as that the R-genes should be 100% effective, which most likely is
unrealistic. Moreover, currently, the deployment on the European market
of varieties developed using genetic engineering is limited. We should also
consider if resistance should only rely on the Rgenes or whether genetic
variation in the polygenic background is of importance for resistance to
LB. In a recent review McGee et al. [19] argued that use of identified R-
Genes needs to be combined with quantitative disease resistance, often
based on many minor genes, because resistance due to specific genes the
tends to vane over time due to strong selection on the disease agents.

Creating lines resistant to LB through breeding is a possibility to avoid
crop destruction by the disease and reduce the current reliance on
pesticides. This is also reflected in the general strategy for the
International Potato Center (CIP) [20]. Heritability estimates for LB
resistance reported in literature ranged from 0.31 to 0.85 [21-25], which
suggests that selection for LB resistance can be very effective. One of the
challenges for selecting for LB resistance has been to be able to improve
resistance without negatively impacting other traits of economic
importance. One example is maturity, for which it has been observed that
cultivars selected for LB resistance showed late maturity. It has been
shown that QTLs for blight resistance and QTLs for maturity were found
at same position [26,27].

Traditional genetic improvement in potatoes has been slow due to the
need for extensive testing in multiple environments and the low
multiplication rate due to the vegetative formation of clones. However, the
genetic constitution of clones is fixed after the first crossing generation
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and this, combined with extensive genotyping in early multiplication
generations, can lead to genomic predictions of line performance before
large scale multi environmental trails (METs) can be conducted. If
genotyping is sufficiently cost effective this can lead to a remarkably high
selection intensity and short generation intervals.

The lack of persistent resistance toward Pi as discussed above is due to
constant development in the disease agent. The Euroblight network
monitors the rapid evolution of Pi across the main potato growing regions
in Europe. Clearly there are major time-dependent changes in the
dominant Pi populations. Yearly reports on results of this monitoring can
be found at https://agro.au.dk/forskning/internationale-
platforme/euroblight (accessed on 20 July 2023) [28]. Long term testing of
resistance will enable monitoring development in resistance over time
and to estimate the genetic correlation between resistance measured at
separate times. This will indicate the combined effect of evolution of the
disease agent and the effects of potential selection for resistance for LB in
potato. To our knowledge such analysis has not been attempted before.

In the period investigated the breeding program mostly was based on
sequential phenotypic selection on disease traits in early clonal
generations, and later selection on maturity, yield, and quality traits. If
genetic correlations between early recorded traits and later yields traits
are negative this may lead to limited genetic progress because advances in
early selection steps are counteracted by selection in later steps due to
negative relationships between early and late recorded traits.

The aims of our study were to estimate the heritability for LB resistance
in a Danish potato population and search of quantitative trait loci with
large effects in order characterize the genetic architecture of LB resistance
in potato and to develop genomic based selection criteria for LB resistance,
where both identified genome areas carrying disease resistance and
quantitative disease resistance based on many minor genes are exploited
to increase resistance to LB. In addition, we aim to evaluate the genetic
development of LB resistance over longer time periods.

MATERIAL AND METHODS

Plant Material

The tested plants were all parts of the routine breeding program run by
Danespo A/S. Early in the breeding program wild relatives were crossed
into the population and in more recent years markers have been used for
early selection and genes stacking. Historically, selection in the population
has primarily been based on phenotypic records from inoculated field
trials. The same testing procedure for LB resistance has been used
throughout the period investigated.
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Every year new parents were selected and crossed. Seeds were grown
per family in the green house and at an early stage moved to individual
pots. A single tuber from each individual pot was grown in the field for
replication. In following years tubers from individuals of interest were
tested for LB resistance. There were no clones that did not stem from the
routine breeding program. The criteria for selecting parents have changed
over the years but is not expected to influence results reported here. The
plant material stem from a total of 36 years of crossing new parents. In
early years only a few progenies of selected parents were tested but in
later years a large group of clones were included (Table 1). This reflects a
gradual increase in the importance of LB resistance in the breeding
program.

Table 1. Description of the phenotypic data *.

Number of Observations

Number of Lines Mean SD

All Years
1980s
1990s
2000s
2010s
2020s

3580
15
53
241
698
2573

1204 491 2.31
4 3.80 0.86
22 4.85 2.06
87 5.30 2.70
474 5.62 2.51
924 4.69 2.18

* The number of observations, number of lines with records, the average value of the raw record of LB resistance and

its standard deviation by decades and all over the years.

Phenotyping

The resistance to Pi was phenotyped by exposing the plants to an isolate
of the disease agent collected in Denmark the year preceding the
resistance test. Tests for disease resistance were performed for 36
consecutive years and, therefore, different pathotypes of Pi were used.
However, no systematic characterization of the pathotype was carried out,
but it must be expected that the dominant pathotype has changed over the
years. (Euroblight, https://agro.au.dk/forskning/internationale-
platforme/euroblight) (accessed on 20 July 2023) [28]. The test trial was
designed by alternating one infector row and two test rows. The infector
row was a mix of Bintje, which is a highly susceptible variety and was used
across all the 36 years of test, and 2 other susceptible varieties that varied
over time. On all four sides of the trial, there was an infector row. Each
plot consisted of three plants with a distance of 33 cm, and each plot was
75 cm away from each other. The resistance to LB was assessed by
attributing a grade to each plot, constituting three plants, based on foliage
observation. The grades ranged from 1 (dead plant) to 9 (no sign of
infection). A grade of 2 meant that only 0.1% to 4% of the green leaves
remained, and the stems were fully attacked. For a grade of 3, 5% to 14%
of the leaves were still green and the stems were also attacked. When 15%
to 39% of the leaves were green and the stems were attacked, it was given
a grade 4. Grade 5 meant that 40% to 59% of green leaves persisted, with
the stems still being affected. If 60% to 70% of the leaves were green but
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the stems remained untouched, it was given a grade of 6. Grade 7 was
given when only 5 to 10 leaves showed infection, and finally, grade 8
signified just 1 to 2 leaves were infected. This definition corresponds to
scoring for resistance toward LB which is common among breeders.
Papers focusing on epidemiology tend more often to use a reversed scale
and then denoting it susceptibility. A full description of the scores is given
in [29].

Genotyping

Sample DNA from 1628 varieties were genotyped using a custom 10k
Affymetrix chip (10647 SNP). Genotyping was done over two batches, with
five lines being genotyped in both batches. Fifteen SNP markers showing
inconsistent genotypes in more than three of the five lines genotyped in
both years were discarded. Then, only one genotype record was kept for
further analyses of the duplicated genotypes. Next, 1108 SNP were
excluded for having a call rate lower than 50%. No individuals were
excluded based on an individual call rate lower than 40%. At the end, the
genotype dataset used for analysis consisted of 1628 individuals genotyped
for 9524 SNP. Finally, missing values were imputed using a random forest
approach [30] with 50 trees using the missRanger R package [31].

The genomic map used to find the location of significant SNPs is the
map corresponding to the DM v6.1 assembly [32]. The SNPs were mapped
on the twelve chromosomes of potato, and a group of SNPs that had an
unassigned position on the genome.

Models for Variance Component Estimation

Different univariate models were evaluated to find the best fitting
model.

y=Xb+Za+e (1
y=Xb+Za+Wp+e )
y=Xb+Za +Egxd + e 3

Where X, Z, W and E are the incidence matrices for fixed effects, the
additive genetic effect, the non-additive genetic effect and the genotype by
decade of testing interaction effect, respectively. The vector b of the fixed
effects included market segment, genotyping batch, and year of the
challenge test. The vectors a, p, gxd and e are vectors of the additive
genetic effect, the non-additive genetic effect, the genotype by decade
interaction effect and the residual environmental effect, respectively. For
the interaction, the decades were built on the year of the challenge test
and so we had five decades; 1980s, 1990s, 2000s, 2010s and 2020s. The
effect of p was left out of model (3) because the corresponding variance
component converged toward zero. The distributional assumptions were
a~N[0,Acz], p~N[0,Ic7], and gxd~NJ[0,Io}..]. Where A was the pedigree-
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based relationship matrix for all clones, and I is an identity matrix of size
corresponding to the number of individuals in p and the number of
genotype by decade interaction effects for gxd. The pedigree-based
relationship matrix was computed using the “AGHmatrix” package in R
[33] assuming a ploidy of four and a probability of occurrence of double
reductions of 0.005.

A multivariate (MT) model was used to estimate the (co)variance
components for the three decades, for which more than 100 observations
were available. In this case, there are three phenotypes, LBy,, LBy, and
LB,, which are the phenotypes of the resistance to LB for tests done in
2000s, 2010s and 2020s, respectively. Only the phenotypes of those decades
were kept because the few observations available for the early decades
lead to convergence issues.

LBy X0 O 0 1rboo Zoo O 0 11200
LB10 = 0 Xl(, 0 bl() + 0 Z10 0 dio| + e (4)
LB; 0 0 Xzollby 0 0 Zzollaze
Where Xy, X10, X205 Zoo, Z10 and Z,, arethe incidence matrices for the
fixed effect and the additive genetic effect. b is the vector of the fixed effect,
which are market segment, the genotyping batch, and the year of the
challenge test. The vectors axx, and e were the additive genetic effect and
the residual environmental effect, respectively,
dgo 0300 0300310 0300320
with [310 ~MVN[0,A ® [ 0agpa;, 03,  Car020
a20 0-aooazo Oajoazo 0'520

The (co)variance components in all models were estimated by REML
using the AI-REML procedure in the DMU software package [34].

Heritability Estimates

Narrow sense heritability (h?) estimates were computed, as the
estimated additive genetic variance divided by the estimated phenotypic
variance and presented in tables as relative variance due to additive
genetic effects. Similarly, the proportion of non-additive genetic variance
was presented as the relative genetic variance due to non-additive effects.
The broad sense heritability (H?) is then the sum of the relative variance
due to additive and due to non-additive genetic effects. The estimated
phenotypic variance was computed as the sum of all the estimated
variance components for each model. Therefore, both narrow sense and
broad sense heritability refer to an individual measurement from a plot
consisting of three plants and do not refer to the heritability of variety
means because the amount of replication varies.

Genome Wide Association Study (GWAS)

The effect of each SNP (from 1 to 9524) was estimated using single
marker regression using a SNP-by-SNP approach (step 1). If at least one
significant SNP was found on the genome, the genotype of the most
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significant SNP, referred to as the Top-SNP, was added to the model as a
fixed effect (step 2), and GWAS were run again.

stepl1=>y=Xb + pB*SNP; + Za + Egxd + e (5)

step 2 =>y = Xb + Br*Top-SNP + B*SNP; + Za+ Egxd + e (6)

The first step of model 5 is like model 3. The only difference is the
addition of a regression on an individual SNP. j is the effect of SNP; In step
2, the genotype of the most significant SNP identified across the genome in
the first step was added as a fixed effect to the model (Top-SNP). This
process was repeated until no more significant SNP were identified. The
significance threshold was set at 0.05/9524 = 5.25 x 107 based on the
Bonferroni correction.

Additive Genetic Variance Explained by Significant Chromosome
Regions

A QTL with significant effect on LB resistance was defined as a SNP or
a group of SNPs capturing the same effects on LB. The group of SNPs were
defined using model (6) in the two-step procedure of the GWAS. Each
group of SNPs were represented by only the most significant SNP, referred
as the Top-SNP. Model (5) was rerun with all Top-SNP included as fixed
effects to estimate the remaining additive genetic variance. The relative
amount of additive genetic variance explained by the chromosome region
were then expressed as the reduction in additive genetic variance from
model (6) compared with the estimate obtained from model (3). All
reductions were expressed as percent reduction from additive genetic
variance estimated in model (3). A similar procedure was used to estimate
the amount of additive genetic variance explained by all significant SNPs
across the genome

Link between the Genotype at the Top-SNP and the Phenotype

To show the effect of the Top-SNP on LB resistance, we collected the
genotypes of all individuals for each of Top-SNP identified. The phenotypic
distribution for each genotype was then visualized in a box plot with sub-
plots for each number of the alternative allele for each QTL identified.

Prediction of Breeding Values

Four different breeding values were predicted for each clone. EBV-
PBLUP is the breeding value predicted using model (3) where a pedigree-
based relationship matrix was used. EBV-GBLUP is the breeding value
estimated using GBLUP. In this case the model used model (3), but a
genomic relationship matrix was used instead of a pedigree relationship
matrix. The genomic relationship matrix was built using the “AGHmatrix”
package in R as well [33] accounting for ploidy. The variance components
used to compute the EBV-PBLUP and the EBV-GBLUP were the ones
estimated using model (3). To evaluate the advantage of including QTL for
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prediction, breeding values were also estimated using an extended model
(6) where all the Top-SNP identified were added as a fixed regression to
the model. This extended model was used both with the pedigree and the
genomic relationship matrix, leading to EBV-QTL-PBLUP and EBV-QTL-
GBLUP.

Cross Validation of Models

To assess accuracy of the four different predicted breeding values, a
five-fold cross-validation strategy was used. The population was randomly
divided into five folds, so that each clone was present in one and only one
fold. When a fold was used as the validation population, all the phenotypes
corresponding to the clones of this fold were masked. The breeding values
of the clones of the given fold used as validation population were then
predicted using the phenotypes from the other four folds. We will refer to
this breeding value as EBVyequcea. Since four different models were tested,
there was four different EBViequced (EBV-PBLUPrequced, EBV-GBLUPreduced,
EBV-QTL-BLUPreducea and EBV-QTL-GBLUPrequcea) predicted for each fold.
All folds in turn were used as validation population so that in the end all
clones had breeding values predicted based on information from the other
folds. Breeding values were also estimated using the whole population and
we will refer to those breeding values as EBV-PBLUPs, EBV-GBLUP,
EBV-QTL-BLUPsy and EBV-QTL-GBLUPsyy.

The accuracy of prediction was computed as the correlation between
the EBVrequcea and (1) the average phenotype for each clone corrected for
the fixed effect (y.) and (2) the EBVgy. The dispersion of the breeding
values was computed as the slope of the regression of y. or EBVrn on
EBVieduced. The correlations were computed in a multivariate analysis of
variance approach using a model including year of crossing to account for
potential genetic trends.

The correlations and regressions were computed for each fold and the
results presented are the average values across the five folds. The standard
errors have been computed as the standard deviation divided by the
square root of the number of folds, hence five.

RESULTS

Data Description

The number of observations recorded, the number of lines assessed,
the average value, and standard deviation of the observations are given in
Table 1 for each decade of testing and for the whole period (All years).
Phenotypes on LB resistance were recorded in (parts of) five successive
decades. In the 1980s and 1990s few records were collected on a small
number of varieties with a considerable increase in the amount to testing
in recent years. The average number of replicated plots per variety was
2.9 and on average each clone was tested in 1.9 years. The grade of
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resistance for the observation done in the 1980s ranged from 2 to 5, which
explains the small standard deviation compared to the other decades.

Variance Components and Population Genetic Parameters

The estimated variance components from models (1), (2), and (3) are
presented in Table 2. In model (2), the variance explained by the non-
additive genetic effect (p) was not significantly different from 0. In the
model 3, alarge genotype per decade interaction (gxd) effect was observed.
Adding the interaction in the model (going from model (1) to model (3)),
led to a decrease in the estimated additive genetic variance and most
importantly to a decrease in the residual variance. Indeed, for model (3),
almost all the phenotypic variance is explained by the additive genetic
effect and the gxd effect. Moreover, the -2Log(L) was very much smaller
for the model including the genotype by decade interaction effect than for
model (1) where the interaction effect was omitted. Model (3) was initially
run including the non-additive genetic effect (p), but the corresponding
variance component converged toward zero and was, therefore, removed
from the model. The relative variance components for the additive genetic
effect presented in Table 2 corresponds to narrow sense heritability for a
record on a single plot with three plants. The sum of relative contributions
for additive genetic variance and non-additive genetic variance in model
(2) corresponds to an estimate of broad sense heritability, again related to
an individual three plant plot.

Table 2. Variance components estimated using three different models *.

Model a_e (1) Model a_p_e (2) Model a_gxd_e (3)

a e a P e a gxd e
Estimates  3.36 0.86 3.09 018 086 256 086 0.64
SE 0.17 0.03 0.25 0.13 0.02 0.19 0.09 0.02
Relative 0.80 0.20 0.75 0.04 021 063 021 0.16
SE 0.01 0.01 0.04 0.03 0.01 003 0.02 0.01
-2Log(L) 5582 5578 5311

* a is the additive genetic variance, p is the non-additive genetic effect, gxd is the genotype by decade effect and e is

the residual variance. Relative is the part of total phenotypic variance explained. -2Log(L) is the -2log of the likelihood.

The estimated variance components for LB resistance assessed in

different decades from model (4) are presented in Table 3. The phenotypes
of the 1980s and 1990s were not included because only few records were
available. The estimates of the additive variance and of the residual
variance are different across the decades showing a clear decline from
first to last decade. The lowest heritability estimate was observed for LB10,
corresponding to the resistance challenge done in the 2010s. In contrast,
the heritability estimates for LBOO and LB20 were both at 0.86.
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Table 3. Variance components and SE estimated in each decade of challenge *.

LB00 LB10 LB20

a e a e a e
Estimates 5.87 097 3.28 145 3.01 0.50
SE 094 012 031 013 0.16 0.02
Relative 0.86 0.14 0.69 031 0.86 0.14
SE 0.03 0.03 0.03 0.03 0.01 0.01

* LB00, LB10, LB20 corresponds to the challenges to LB done in the 2000s, 2010s and 2020s respectively. a is the
additive genetic variance and e is the residual variance. Relative is the part of total phenotypic variance explained.

The genetic correlations between the resistance traits measured across
different decades of challenge are presented in Table 4. The correlation
ranged from 0.57 to 0.91, with LBOO and LB10 showing the highest
correlation. While LB10 and LB20 also showed a high correlation, they
may still be considered as distinct traits. The genetic correlation between
LBO0O0 and LB20 appeared relatively small compared to the other pairs. This
observation corroborates the presence of significant genotype-by-decade
interaction.

Table 4. Genetic correlations between LB-resistance from different decades of challenge *.

LB00 LB10 LB20
LBOO 1.00 -
LB10 0.91(0.06) 1.00
LB20 0.57(0.11) 0.75(0.04) 1.00

* LB00, LB10, LB20 corresponds to the challenges to LB done in the 2000s, 2010s and 2020s respectively.

GWAS

Three chromosome regions significantly associated with LB resistance
were found and results are summarized in Table 5. The genome regions
with significant effects on LB resistance are located on chromosomes 5, 9
and 1.

Table 5. QTLs significantly associated with resistance to LB *.

QTL Chr Position Top-SNP (bp)

Genetic Variance Explained by Top-SNP (%) -Log(P) Top-SNP MAF

QTLS 5 4726087
QTLS 9 62365725
QTL1 1 68451137

5.96 12.84 0.22
4.87 8.40 0.06
2.34 5.99 0.19

* Chr is the chromosome, Position Top-SNP is the position of the most significant SNP in the QTL, Genetic variance
explained by Top-SNP is the additive genetic variance explained by the Top-SNP, Log(P) Top-SNP is the negative log of

the p-value of the most significant SNP in the QTL and MAF is the minor allele frequency in our population for the

Top-SNP.

TOP-SNP are defined here as the most significant SNP in a genomic
region defined as a QTL. We determined that there were 3 chromosome
regions with significant effects on LB resistance so there were three TOP
SNP, one on chromosome 5, one on chromosome 9, and another SNP on
chromosome 1. Even though the QTL on chromosome 5 is known to be
linked with maturity [26] we also looked at its effect on LB. Each of the QTL
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explained 5.96, 4.87 and 2.34 percent of the total additive genetic variance
in LB-resistance, respectively.

The effects of different number of alleles in each of the TOP-SNPs are
shown in Figure 1. In the population studied, the number of copies of the
minor allele of Top SNP of QTL5 on chromosome 5 confers a negative
impact on resistance to LB with a clear additive dosage effect. For Top SNP
of QTL9 an increased number of copies of the minor allele leads to
increased resistance to LB which also seems to be a dosage effect were
having one more of the alternate allele confer higher resistance to LB. The
alternative allele of Top SNP of QTL1 seems to confer advantages for
resistance to LB, where all heterozygous clones have an increased
resistance to LB and the gene, therefore, appear to be dominant. No clones
were homozygous for the alternative allele. However, it is complicated to
draw conclusion on the effects of the number of alleles on the raw
phenotype because of the low frequencies of the genotypes with at least
three copies of the minor allele. In this population, the frequency of the
beneficial allele was 0.78 for the Top-SNP of QTLS5, 0.06 for the Top-SNP of
QTL9 and 0.19 for the Top-SNP of QTLI1.

o QTL5 QTLY QTL1
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Figure 1. Boxplot of phenotype at identified QTL *; * On the x axis are the genotypes (number of alleles of
the minor allele) at the TOP-SNP and on the y axis is the average phenotypic value for all individual
genotypes. On the top of each box is the number of clones with this specific genotype.

Prediction of Breeding Values

The results of cross validation of models for prediction of breeding
values are presented in Table 6. The prediction accuracies evaluated as the
correlation between y. and EBVreauceda ranged from 0.56 to 0.75. Accuracies
were similar when using PBLUP, GBLUP or QTL-PBLUP but were markedly
higher for the QTL-GBLUP model. The inflation of the distribution of
predicted breeding values ranged from 0.91 to 1.32. Overall, for all the
models the breeding values were deflated except for the GBLUP where
they were inflated.
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The correlation between EBVsy and EBViequcea ranged from 0.70 to 0.90.
Accuracies were similar when using PBLUP or QTL-PBLUP but were higher
for the models where genomic information was included and especially
for the QTL-GBLUP model. The regression indicating dispersion of the
predicted breeding values ranged from 0.96 to 1.18.

When associated with the genomic relationship matrix, adding Top-
SNP of the three QTL identified as fixed regression into the model led to a
considerable gain in accuracy. While no gain was observed when PBLUP
and QTL-PBLUP model were compared.

Table 6. Accuracies and inflations of the breeding values predicted using four different models *.

PBLUP GBLUP QTL-PBLUP QTL-GBLUP

Correlation with EBV equcea

Ve 0.62 (0.10) 0.58 (0.08) 0.56 (0.11) 0.75 (0.08)
EBVian  0.74(0.04) 0.82(0.05) 0.70 (0.09) 0.90 (0.05)

Inflation (Slope of Regression on EBV equced) Ve 1.28 (0.09) 0.91(0.04) 1.32(0.13) 1.25 (0.03)

EBVyy 1.18(0.06) 0.96 (0.02) 1.15(0.11) 0.99 (0.03)

* yc is the phenotype corrected with the fixed effect and ebvrun is the breeding value estimated with the full dataset.

Both were correlated with ebvreduced Which is the breeding value estimated while the phenotype of the validation

population was removed. the inflation was computed as the slope of the regression of yc or ebviun on the ebvreduced.

Breeding Values and Genetic Trend

Predicted breeding values from model (3), where a genotype by decade
interaction effect has been included in the model were used in
investigating the genetic trend for LB resistance. Only a few varieties
created in the early years of the breeding program had been tested for LB
resistance. It is also important to note that some of the varieties presented
were included in the test in several years. Indeed, the varieties used as
spreader rows have been used across many years, like for example the
Bintje variety which has been used over all the 36 years. Moreover, many
varieties have related varieties which have been tested as well, leading to
more accurate breeding values for these clones.

The estimated genetic trends for LB resistance are shown in Figure 2.
No clear trend in the breeding values was observed. It does not seem like
there has been any efficient selection for LB resistance as the mean did not
change significantly. However, there is an increase in variation of the
breeding values with time and we see an increase in number of more
resistant (fully or not) varieties from the 2000s with an acceleration from
2010.
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Figure 2. Genetic trend for LB resistance *, * Points are the breeding values estimated using model 3 for
each of the varieties. Line is the average breeding value per year of first appearance in the breeding

program.

DISCUSSION

The comparison of the univariate models gave very strong support for
model (3), which includes a genotype by decade interaction that accounts
for 21 percent of all phenotypic variance in LB resistance. This significant
contribution of genotype-by-time interaction to LB resistance variance has
been previously reported [24]. The literature reports a wide range of
heritability estimates for LB resistance from 0.31 to 0.85 [22-25,35].
Several factors could explain this variability, such as differences in test
procedures and trait definition, in the plant material tested, in the
pathogens used for inoculation, or in the methodology used for estimating
variance components. In this study the estimated narrow sense
heritability defined at the single plot level is very high (0.63) providing a
solid basis for selection for resistance towards Pi based on general
polygenic breeding values. However, the considerable amount of genotype
by decade interaction suggests that resistance could fluctuate over time,
potentially due to evolution in the disease agent or due to selective
breeding in the tested varieties. A stronger focus a specific pool of parents
may also have contributed to the decrease in genetic variance over time.
Similar results were found by [24], who found significant genotype-by-
year interaction even when experiments were conducted over a much
shorter time span than our study. However, yearly effects tend to be
strongly affected by differences in weather from year to year, an effect
that is expected to be limited when decades are considered. LB resistance
measured across different decades shows very high heritability within
each decade, but the genetic correlations between resistance in different
decades are significantly lower than unity, particularly between the 2020s
and earlier decades. This likely reflects a change in the Pi pathogen, rather
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than the varieties themselves, since limited selection for LB resistance
appears to have occurred in the population. In our study, data collection
spanned from the 1980s to 2023, with at least seven different Pi pathotypes
identified in Denmark between 2006 and 2022 [28]. This means that
resistance may reduce or break down due to evolution in Pi. However, the
model used to predict breeding values includes a genotype by decade
interaction and this provides breeding values averaged over all the
decades/years involved and this is expected to provide a more general
resistance that is not easily circumvented by the Pi. The estimate of
additive genetic variance and especially the estimate of residual variance
reduced over the decades investigated. Genetic and environmental
variances decreased over time and genetic correlations between distant
decades were significantly lower than unity. Again, this indicates a change
in the Pi genotypes evolved as there are strong genetic links between
clones tested in different decades. However, genetic correlations were
sufficient to ensure lasting genetic response for LB resistance. One of the
limitations in our study was the scarce amount of data registered in the
early years of the breeding program. Acquiring more data per year could
help to dissect the genotype by decade interaction, as several factors could
have contributed to the interaction. Furthermore, in future testing, a
thorough characterization of Pi genotypes involved would be of
considerable interest, potentially combined with specific testing of
resistance toward well characterized Pi genotypes.

The absence of genetic trend (Figure 2) implies that selection for LB
resistance has been limited during the period studied. As previously
discussed, this might result from sequential phenotypic selection and/or
because of the use of old material as parents in later years. Resistance
development has relied heavily on R-genes, which has been utilized since
the introgression of R-genes identified in wild potatoes from South
America. However, the R-genes are not always a source of long-lasting
resistance [9,36]. For example, the pathotype EU_41_A2 acquired the
ability to overcome the resistance coming from several R-genes [36]. One
proposed strategy has been to accumulate more than one R-genes in a
single variety, which is the pyramiding of R-genes approach [14]. In theory,
if a single clone carried the beneficial allele for four R-genes, it would
become virtually fully resistant to the pathogen targeted [18]. However,
this implies for that all the R-genes are 100% effective, which is likely
unrealistic [18]. In this study only a few genomic regions affecting LB
resistance were identified. This could be because only few resistance genes
were present in the population or because they are not effective in the
population studied. The latter reason seems most likely as it takes many
generations to make a tetraploid population homozygous for a resistance
allele.
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The three QTL identified in this study explained all together 13% of the
additive genetic variance for LB resistance. It means that most of the
additive genetic variance in LB resistance is due to the polygenic
background, i.e., genes with small effects that cannot be individually
identified in our data.

One challenge in selection for LB resistance, is that the loci having a
positive effect for resistance may lead to a negative response for other
traits of interest. This could explain the low allele frequency of the positive
allele for LB resistance for QTL9 and QTL1. For example, the pleiotropy
associated with a region on chromosome 5, which affects both maturity
and LB resistance, is well-documented [26]. To address this, multi-trait
evaluation models should be developed to estimate and exploit genetic
correlations between traits, and appropriate economic weights should be
assigned to account for potential unfavorable correlations between traits
of economic importance. Cloning of the genes involved would also aid in
the management of LB resistance.

The accuracy of breeding values predicted from pedigree information
or from genomic information was very high. This is not surprising due to
the high heritability of LB resistance observed and because most varieties
will have many relatives that were also tested. Because of this resemblance
between the training and the validating population, a high prediction
accuracy is expected. The advantage of using a GBLUP model is relatively
limited because of the high heritability of LB resistance and because of the
cross-validation strategy which also yielded high accuracies with PBLUP.
However, in forward prediction of breeding values for new crosses with
few or no close relatives tested a greater advantage of GBLUP model is
expected. Moreover, we had access to a deep pedigree allowing accurately
tracking the history of the population. The correlation between EBVs, and
EBVreduced indicates the relative change in accuracy when a clone is having
its own phenotype removed. The drop in accuracy is relatively small
especially for the GBLUP model. This means that if a line is genotyped it is
possible to accurately predict its LB resistance before testing this line for
LB resistance. Enciso-Rodriguez et al (2018) [24] has drawn the same
conclusion from their study. This situation provides excellent possibilities
for early selection for LB resistance based on such a combined model. Such
a model would lead to a stratified testing of new (and older) clones to
update the training population and the use of intense selection among all
genotyped individuals. Moreover, the QTL-GBLUP model show that while
having own phenotype, genomic information does not improve accuracy
of prediction for LB resistance, but incorporating extra information on the
genetic architecture of LB resistance could be highly relevant. These
results must be interpreted with some caution as the QTL were identified
on the entire population, which is also the training population, and this
may tend to provide too optimistic results, even though the effects were
estimated in the training population only. Even though clear genotype-by-
year interaction was observed, selection for LB resistance is still expected
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to have a lasting effect but continuous testing for LB resistance is needed
to identify lack of resistance toward new Pi strains.

CONCLUSIONS

The narrow sense heritability of resistance to LB in potato was large
and this shows that results of resistance tests can be used for efficient
selection for LB resistance. The resistance changed over time as reflected
in a significant interaction between genotype and decade of testing, an
interaction that most likely is due to evolution in the Pi. However, the
genetic correlation between resistance in different time periods is still
substantial so that selection effects will be persistent but potentially will
reduce over time. Consistent testing of new lines for resistance is therefore
needed. A GWAS study identified three genomic regions that affected
resistance toward LB. In total these genomic regions explained 13% of the
additive genetic variance in LB resistance. L.e., most of the genetic variance
in LB resistance is polygenic and obviously all genetic variation should be
used in selection for LB resistance. Extending models so that both
identified genomic regions and polygenic variation were used in
predicting breeding values clearly yielded the most accurate selection
criteria.
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