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ABSTRACT 

Late blight is a disease responsible for major losses to the potato industry 
and breeding new resistant varieties is a sustainable way to fight late 
blight and reduce the need for chemical treatments. This study aimed at 
understanding the genetic basis of late blight resistance in a commercial 
population of potatoes. Historical records from a large breeding program 
were used. Different statistical models were evaluated to determine the 
contribution of additive genetic variance, non-additive genetic variance, 
and genotype-by-decade of testing interaction variance to the total 
phenotypic variance. GWAS were conducted to identify genomic regions 
associated with late blight resistance and the part of the additive genetic 
variance explained by these regions were estimated. Breeding values for 
resistance toward late blight were predicted using four different modeling 
approaches. In the two last models the most significant SNP of significant 
genomic regions were included as fixed effects. Predictive ability was 
assessed using five-fold cross-validation by correlating corrected 
phenotypes or breeding values predicted using all data with those 
predicted without the phenotypes in the validation populations. Results 
showed that late blight resistance was highly heritable and that the 
contribution of the genotype-by-decade interaction was significant, 
indicating differential resistance toward different late blight strains 
dominating in each decade. Three genomic regions significantly affecting 
late blight resistance explained only 13% of the total additive genetic 
variance in resistance. Genomic breeding values (GEBV) showed high 
predictive ability suggesting that genetic or genomic selection could be an 
effective tool to develop new late blight resistant varieties. A strategy 
combining genomic selection and including knowledge on genomic 
regions associated with resistance is advantageous. 

KEYWORDS: Phytophthora infestans; tetraploid potatoes; resistance genes; 
host pathogen coevolution; genomic selection 

  

 Open Access 

Received: 26 Nov 2025 
Accepted: 21 Jan 2026 
Published: 26 Jan 2026 

Copyright ©  2026 by the author. 
Licensee Hapres, London, United 
Kingdom. This is an open access 
article distributed under the 
terms and conditions of Creative 
Commons Attribution 4.0 
International License. 

https://doi.org/10.20900/cbgg20260001
https://cbgg.hapres.com/


 
Crop Breeding, Genetics and Genomics 2 of 20 

Crop Breed Genet Genom. 2026;8(1):e260001. https://doi.org/10.20900/cbgg20260001  

ABBREVIATIONS  

LB, Late Blight; Rgene, gene of resistance; Pi, Phytophthora infestans; AVR, 
avirulence gene. 

INTRODUCTION 

Late blight (LB) is one of the most devastating diseases in potatoes, 
tomatoes, and tobacco. It is caused by an oomycete called Phytophthora 
infestans (Pi), which can attack all parts of the plant. An infection by this 
pathogen can result in complete destruction of the plant in a few days. Pi 
originated from Peru and Mexico and was most likely introduced to 
Europe in the mid XIXth century along with contaminated potatoes 
imported from North America in order to fight another disease. 
Subsequently, LB was partially the cause of the famine in Europe in the 
XIXth century, that in particular hit Ireland [1]. From this point, massive 
efforts were conducted to fight LB, going from the development of 
fungicides, management recommendations, and development of resistant 
lines through screening for natural resistance in established potato 
varieties as well as in wild potatoes [1]. The consequences of LB and of the 
control measures taken were in 2009 estimated to cost €9 billion 
worldwide [2]. This cost included the loss due to LB contamination, the cost 
of the fungicides and many other factors such as the societal cost, 
including for example the impact on human health. While having an 
important cost, the use of fungicides is widely preponderant to fight LB. In 
2016 in the Netherlands, the amounts of fungicides used against LB 
represented 50% of the total amount of pesticides used [3]. Besides their 
economic and societal costs, with time, some fungicides became inefficient 
as Pi evolved to become resistant to the treatments. One of the latest 
examples is the LB genotype EU43 which to is resistant to mandipropamid 
[4]. 

Another way to fight LB is by establishing new genetic resistance. 
Following the mid-XIXth century crisis, intensive work was done 
especially in the early XXth century to identify wild potatoes which were 
resistant to LB and the genes responsible for this resistance [5]. It is 
assumed that the resistance of a host to a pathogen relies on the 
interaction of a gene of resistance (Rgene) expressed in the host and an 
avirulence gene (AVR gene) expressed in the pathogen [6]. Those two genes 
presumably co-evolved simultaneously and, therefore, the plants and the 
pathogens carrying the matching pairs of Rgenes and AVR genes originate 
from the same geographic regions. This phenomenon is the reason why 
primary sources of resistance to Pi were searched for in wild populations 
of Solanum spp. in South America and Mexico. Over 70 genes of resistance 
to Pi has now been recognized as identified in wild Solanum species and 
as well as some in cultivated potatoes Solanum tuberosum [7,8]. This has 
led to the development of varieties showing higher resistance. However, 
here again, because of its ability to evolve, Pi can escape the resistance 
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conveyed by incorporated Rgenes. Indeed, the introgression of eleven 
dominant resistant genes first identified in Solanum demissum L. (R1–R11) 
did not lead to long term resistance to Pi [9]. Moreover, while some 
resistance genes such as Rpi-blb3 [10] or the Rpi2 locus [11] confer 
resistance toward a large spectrum of pathotypes while others such as R3a, 
R3b, R6 and R7 [12,13] confer a resistance only to specific pathotypes. One 
of the strategies proposed to slow down the ability of the pathogen to 
escape resistance is to stack several Rgenes in one cultivar [14]. However, 
such R-genes need a broad spectrum of resistance in order to ensure long 
term resistance. Introgression of two or three resistance genes through 
traditional breeding is a lengthy process. It took half a century to get two 
new varieties of S. tuberosum carrying Rpi-blb2 coming initially from S. 
bulbocastanum [3]. The difficulty in introgression also depends on the 
endosperm balance number (EBN) that determines the ease of crossing 
related potato species. Different methods such as hybrid breeding and 
genetic engineering could be used to stack Rgenes more efficiently in 
cultivated potato. Some studies have used such technologies and were able 
to stack up to 4 Rgenes into S. tuberosum [3,15–17], leading to plants being 
highly resistant to LB. In theory, if a single clone carried the advantageous 
allele for four R-genes, it would be nearly impossible for the pathogen to 
overcome this resistance [18]. However, this relies on prerequisites such 
as that the R-genes should be 100% effective, which most likely is 
unrealistic. Moreover, currently, the deployment on the European market 
of varieties developed using genetic engineering is limited. We should also 
consider if resistance should only rely on the Rgenes or whether genetic 
variation in the polygenic background is of importance for resistance to 
LB. In a recent review McGee et al. [19] argued that use of identified R-
Genes needs to be combined with quantitative disease resistance, often 
based on many minor genes, because resistance due to specific genes the 
tends to vane over time due to strong selection on the disease agents. 

Creating lines resistant to LB through breeding is a possibility to avoid 
crop destruction by the disease and reduce the current reliance on 
pesticides. This is also reflected in the general strategy for the 
International Potato Center (CIP) [20]. Heritability estimates for LB 
resistance reported in literature ranged from 0.31 to 0.85 [21–25], which 
suggests that selection for LB resistance can be very effective. One of the 
challenges for selecting for LB resistance has been to be able to improve 
resistance without negatively impacting other traits of economic 
importance. One example is maturity, for which it has been observed that 
cultivars selected for LB resistance showed late maturity. It has been 
shown that QTLs for blight resistance and QTLs for maturity were found 
at same position [26,27]. 

Traditional genetic improvement in potatoes has been slow due to the 
need for extensive testing in multiple environments and the low 
multiplication rate due to the vegetative formation of clones. However, the 
genetic constitution of clones is fixed after the first crossing generation 
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and this, combined with extensive genotyping in early multiplication 
generations, can lead to genomic predictions of line performance before 
large scale multi environmental trails (METs) can be conducted. If 
genotyping is sufficiently cost effective this can lead to a remarkably high 
selection intensity and short generation intervals. 

The lack of persistent resistance toward Pi as discussed above is due to 
constant development in the disease agent. The Euroblight network 
monitors the rapid evolution of Pi across the main potato growing regions 
in Europe. Clearly there are major time-dependent changes in the 
dominant Pi populations. Yearly reports on results of this monitoring can 
be found at https://agro.au.dk/forskning/internationale-
platforme/euroblight (accessed on 20 July 2023) [28]. Long term testing of 
resistance will enable monitoring development in resistance over time 
and to estimate the genetic correlation between resistance measured at 
separate times. This will indicate the combined effect of evolution of the 
disease agent and the effects of potential selection for resistance for LB in 
potato. To our knowledge such analysis has not been attempted before. 

In the period investigated the breeding program mostly was based on 
sequential phenotypic selection on disease traits in early clonal 
generations, and later selection on maturity, yield, and quality traits. If 
genetic correlations between early recorded traits and later yields traits 
are negative this may lead to limited genetic progress because advances in 
early selection steps are counteracted by selection in later steps due to 
negative relationships between early and late recorded traits. 

The aims of our study were to estimate the heritability for LB resistance 
in a Danish potato population and search of quantitative trait loci with 
large effects in order characterize the genetic architecture of LB resistance 
in potato and to develop genomic based selection criteria for LB resistance, 
where both identified genome areas carrying disease resistance and 
quantitative disease resistance based on many minor genes are exploited 
to increase resistance to LB. In addition, we aim to evaluate the genetic 
development of LB resistance over longer time periods. 

MATERIAL AND METHODS 

Plant Material 

The tested plants were all parts of the routine breeding program run by 
Danespo A/S. Early in the breeding program wild relatives were crossed 
into the population and in more recent years markers have been used for 
early selection and genes stacking. Historically, selection in the population 
has primarily been based on phenotypic records from inoculated field 
trials. The same testing procedure for LB resistance has been used 
throughout the period investigated. 
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Every year new parents were selected and crossed. Seeds were grown 
per family in the green house and at an early stage moved to individual 
pots. A single tuber from each individual pot was grown in the field for 
replication. In following years tubers from individuals of interest were 
tested for LB resistance. There were no clones that did not stem from the 
routine breeding program. The criteria for selecting parents have changed 
over the years but is not expected to influence results reported here. The 
plant material stem from a total of 36 years of crossing new parents. In 
early years only a few progenies of selected parents were tested but in 
later years a large group of clones were included (Table 1). This reflects a 
gradual increase in the importance of LB resistance in the breeding 
program. 

Table 1. Description of the phenotypic data *. 

 Number of Observations Number of Lines Mean SD 
All Years 3580 1204 4.91 2.31 
1980s 15 4 3.80 0.86 
1990s 53 22 4.85 2.06 
2000s 241 87 5.30 2.70 
2010s 698 474 5.62 2.51 
2020s 2573 924 4.69 2.18 

* The number of observations, number of lines with records, the average value of the raw record of LB resistance and 
its standard deviation by decades and all over the years. 

Phenotyping 

The resistance to Pi was phenotyped by exposing the plants to an isolate 
of the disease agent collected in Denmark the year preceding the 
resistance test. Tests for disease resistance were performed for 36 
consecutive years and, therefore, different pathotypes of Pi were used. 
However, no systematic characterization of the pathotype was carried out, 
but it must be expected that the dominant pathotype has changed over the 
years. (Euroblight, https://agro.au.dk/forskning/internationale-
platforme/euroblight) (accessed on 20 July 2023) [28]. The test trial was 
designed by alternating one infector row and two test rows. The infector 
row was a mix of Bintje, which is a highly susceptible variety and was used 
across all the 36 years of test, and 2 other susceptible varieties that varied 
over time. On all four sides of the trial, there was an infector row. Each 
plot consisted of three plants with a distance of 33 cm, and each plot was 
75 cm away from each other. The resistance to LB was assessed by 
attributing a grade to each plot, constituting three plants, based on foliage 
observation. The grades ranged from 1 (dead plant) to 9 (no sign of 
infection). A grade of 2 meant that only 0.1% to 4% of the green leaves 
remained, and the stems were fully attacked. For a grade of 3, 5% to 14% 
of the leaves were still green and the stems were also attacked. When 15% 
to 39% of the leaves were green and the stems were attacked, it was given 
a grade 4. Grade 5 meant that 40% to 59% of green leaves persisted, with 
the stems still being affected. If 60% to 70% of the leaves were green but 
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the stems remained untouched, it was given a grade of 6. Grade 7 was 
given when only 5 to 10 leaves showed infection, and finally, grade 8 
signified just 1 to 2 leaves were infected. This definition corresponds to 
scoring for resistance toward LB which is common among breeders. 
Papers focusing on epidemiology tend more often to use a reversed scale 
and then denoting it susceptibility. A full description of the scores is given 
in [29]. 

Genotyping 

Sample DNA from 1628 varieties were genotyped using a custom 10k 
Affymetrix chip (10647 SNP). Genotyping was done over two batches, with 
five lines being genotyped in both batches. Fifteen SNP markers showing 
inconsistent genotypes in more than three of the five lines genotyped in 
both years were discarded. Then, only one genotype record was kept for 
further analyses of the duplicated genotypes. Next, 1108 SNP were 
excluded for having a call rate lower than 50%. No individuals were 
excluded based on an individual call rate lower than 40%. At the end, the 
genotype dataset used for analysis consisted of 1628 individuals genotyped 
for 9524 SNP. Finally, missing values were imputed using a random forest 
approach [30] with 50 trees using the missRanger R package [31]. 

The genomic map used to find the location of significant SNPs is the 
map corresponding to the DM v6.1 assembly [32]. The SNPs were mapped 
on the twelve chromosomes of potato, and a group of SNPs that had an 
unassigned position on the genome. 

Models for Variance Component Estimation 

Different univariate models were evaluated to find the best fitting 
model. 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞 (1) 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐖𝐩 + 𝐞 (2) 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐄𝐠𝐱𝐝 + 𝐞 (3) 

Where X, Z, W and E are the incidence matrices for fixed effects, the 
additive genetic effect, the non-additive genetic effect and the genotype by 
decade of testing interaction effect, respectively. The vector b of the fixed 
effects included market segment, genotyping batch, and year of the 
challenge test. The vectors a, p, gxd and e are vectors of the additive 
genetic effect, the non-additive genetic effect, the genotype by decade 
interaction effect and the residual environmental effect, respectively. For 
the interaction, the decades were built on the year of the challenge test 
and so we had five decades; 1980s, 1990s, 2000s, 2010s and 2020s. The 
effect of p was left out of model (3) because the corresponding variance 
component converged toward zero. The distributional assumptions were 
𝐚~N[0, 𝐀σa

2], 𝐩~N[0, 𝐈σp
2], and 𝐠𝐱𝐝~N[0, 𝐈σgxe

2 ]. Where A was the pedigree-

https://doi.org/10.20900/cbgg20260001


 
Crop Breeding, Genetics and Genomics 7 of 20 

Crop Breed Genet Genom. 2026;8(1):e260001. https://doi.org/10.20900/cbgg20260001  

based relationship matrix for all clones, and I is an identity matrix of size 
corresponding to the number of individuals in p and the number of 
genotype by decade interaction effects for gxd. The pedigree-based 
relationship matrix was computed using the “AGHmatrix” package in R 
[33] assuming a ploidy of four and a probability of occurrence of double 
reductions of 0.005. 

A multivariate (MT) model was used to estimate the (co)variance 
components for the three decades, for which more than 100 observations 
were available. In this case, there are three phenotypes, 𝐋𝐁𝟎𝟎, 𝐋𝐁𝟏𝟎 and 
𝐋𝐁𝟐𝟎 which are the phenotypes of the resistance to LB for tests done in 
2000s, 2010s and 2020s, respectively. Only the phenotypes of those decades 
were kept because the few observations available for the early decades 
lead to convergence issues. 

[

𝐋𝐁𝟎𝟎

𝐋𝐁𝟏𝟎

𝐋𝐁𝟐𝟎

]  =  [
𝐗𝟎𝟎

0
0

0
𝐗𝟏𝟎

0

0
0

𝐗𝟐𝟎

] [

𝐛𝟎𝟎

𝐛𝟏𝟎

𝐛𝟐𝟎

]  +  [
𝐙𝟎𝟎

0
0

0
𝐙𝟏𝟎

0

0
0

𝐙𝟐𝟎

] [

𝐚𝟎𝟎

𝐚𝟏𝟎

𝐚𝟐𝟎

] + 𝐞 (4) 

Where 𝐗𝟎𝟎, 𝐗𝟏𝟎, 𝐗𝟐𝟎, 𝐙𝟎𝟎, 𝐙𝟏𝟎 and 𝐙𝟐𝟎 are the incidence matrices for the 
fixed effect and the additive genetic effect. b is the vector of the fixed effect, 
which are market segment, the genotyping batch, and the year of the 
challenge test. The vectors axx, and e were the additive genetic effect and 
the residual environmental effect, respectively, 

with [

𝐚𝟎𝟎

𝐚𝟏𝟎

𝐚𝟐𝟎

] ~MVN [𝟎, 𝐀 ⊗  (
σa00

2

σa00a10

σa00a20

σa00a10

σa10
2

σa10a20

σa00a20

σa10a20

σa20
2

)], 

The (co)variance components in all models were estimated by REML 
using the AI-REML procedure in the DMU software package [34]. 

Heritability Estimates 

Narrow sense heritability (h2) estimates were computed, as the 
estimated additive genetic variance divided by the estimated phenotypic 
variance and presented in tables as relative variance due to additive 
genetic effects. Similarly, the proportion of non-additive genetic variance 
was presented as the relative genetic variance due to non-additive effects. 
The broad sense heritability (H2) is then the sum of the relative variance 
due to additive and due to non-additive genetic effects. The estimated 
phenotypic variance was computed as the sum of all the estimated 
variance components for each model. Therefore, both narrow sense and 
broad sense heritability refer to an individual measurement from a plot 
consisting of three plants and do not refer to the heritability of variety 
means because the amount of replication varies. 

Genome Wide Association Study (GWAS) 

The effect of each SNP (from 1 to 9524) was estimated using single 
marker regression using a SNP-by-SNP approach (step 1). If at least one 
significant SNP was found on the genome, the genotype of the most 
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significant SNP, referred to as the Top-SNP, was added to the model as a 
fixed effect (step 2), and GWAS were run again. 

step 1 => y = Xb + β*SNPi + Za + Egxd + e (5) 

step 2 => y = Xb + βT*Top-SNP + β*SNPi + Za+ Egxd + e (6) 

The first step of model 5 is like model 3. The only difference is the 
addition of a regression on an individual SNP. β is the effect of SNPi. In step 
2, the genotype of the most significant SNP identified across the genome in 
the first step was added as a fixed effect to the model (Top-SNP). This 
process was repeated until no more significant SNP were identified. The 
significance threshold was set at 0.05/9524 = 5.25 × 10−6 based on the 
Bonferroni correction. 

Additive Genetic Variance Explained by Significant Chromosome 
Regions 

A QTL with significant effect on LB resistance was defined as a SNP or 
a group of SNPs capturing the same effects on LB. The group of SNPs were 
defined using model (6) in the two-step procedure of the GWAS. Each 
group of SNPs were represented by only the most significant SNP, referred 
as the Top-SNP. Model (5) was rerun with all Top-SNP included as fixed 
effects to estimate the remaining additive genetic variance. The relative 
amount of additive genetic variance explained by the chromosome region 
were then expressed as the reduction in additive genetic variance from 
model (6) compared with the estimate obtained from model (3). All 
reductions were expressed as percent reduction from additive genetic 
variance estimated in model (3). A similar procedure was used to estimate 
the amount of additive genetic variance explained by all significant SNPs 
across the genome 

Link between the Genotype at the Top-SNP and the Phenotype 

To show the effect of the Top-SNP on LB resistance, we collected the 
genotypes of all individuals for each of Top-SNP identified. The phenotypic 
distribution for each genotype was then visualized in a box plot with sub-
plots for each number of the alternative allele for each QTL identified. 

Prediction of Breeding Values 

Four different breeding values were predicted for each clone. EBV-
PBLUP is the breeding value predicted using model (3) where a pedigree-
based relationship matrix was used. EBV-GBLUP is the breeding value 
estimated using GBLUP. In this case the model used model (3), but a 
genomic relationship matrix was used instead of a pedigree relationship 
matrix. The genomic relationship matrix was built using the “AGHmatrix” 
package in R as well [33] accounting for ploidy. The variance components 
used to compute the EBV-PBLUP and the EBV-GBLUP were the ones 
estimated using model (3). To evaluate the advantage of including QTL for 
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prediction, breeding values were also estimated using an extended model 
(6) where all the Top-SNP identified were added as a fixed regression to 
the model. This extended model was used both with the pedigree and the 
genomic relationship matrix, leading to EBV-QTL-PBLUP and EBV-QTL-
GBLUP. 

Cross Validation of Models 

To assess accuracy of the four different predicted breeding values, a 
five-fold cross-validation strategy was used. The population was randomly 
divided into five folds, so that each clone was present in one and only one 
fold. When a fold was used as the validation population, all the phenotypes 
corresponding to the clones of this fold were masked. The breeding values 
of the clones of the given fold used as validation population were then 
predicted using the phenotypes from the other four folds. We will refer to 
this breeding value as EBVreduced. Since four different models were tested, 
there was four different EBVreduced (EBV-PBLUPreduced, EBV-GBLUPreduced, 
EBV-QTL-BLUPreduced and EBV-QTL-GBLUPreduced) predicted for each fold. 
All folds in turn were used as validation population so that in the end all 
clones had breeding values predicted based on information from the other 
folds. Breeding values were also estimated using the whole population and 
we will refer to those breeding values as EBV-PBLUPfull, EBV-GBLUPfull, 
EBV-QTL-BLUPfull and EBV-QTL-GBLUPfull. 

The accuracy of prediction was computed as the correlation between 
the EBVreduced and (1) the average phenotype for each clone corrected for 
the fixed effect (yc) and (2) the EBVfull. The dispersion of the breeding 
values was computed as the slope of the regression of yc or EBVfull on 
EBVreduced. The correlations were computed in a multivariate analysis of 
variance approach using a model including year of crossing to account for 
potential genetic trends. 

The correlations and regressions were computed for each fold and the 
results presented are the average values across the five folds. The standard 
errors have been computed as the standard deviation divided by the 
square root of the number of folds, hence five. 

RESULTS 

Data Description 

The number of observations recorded, the number of lines assessed, 
the average value, and standard deviation of the observations are given in 
Table 1 for each decade of testing and for the whole period (All years). 
Phenotypes on LB resistance were recorded in (parts of) five successive 
decades. In the 1980s and 1990s few records were collected on a small 
number of varieties with a considerable increase in the amount to testing 
in recent years. The average number of replicated plots per variety was 
2.9 and on average each clone was tested in 1.9 years. The grade of 
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resistance for the observation done in the 1980s ranged from 2 to 5, which 
explains the small standard deviation compared to the other decades. 

Variance Components and Population Genetic Parameters 

The estimated variance components from models (1), (2), and (3) are 
presented in Table 2. In model (2), the variance explained by the non-
additive genetic effect (p) was not significantly different from 0. In the 
model 3, a large genotype per decade interaction (gxd) effect was observed. 
Adding the interaction in the model (going from model (1) to model (3)), 
led to a decrease in the estimated additive genetic variance and most 
importantly to a decrease in the residual variance. Indeed, for model (3), 
almost all the phenotypic variance is explained by the additive genetic 
effect and the gxd effect. Moreover, the −2Log(L) was very much smaller 
for the model including the genotype by decade interaction effect than for 
model (1) where the interaction effect was omitted. Model (3) was initially 
run including the non-additive genetic effect (p), but the corresponding 
variance component converged toward zero and was, therefore, removed 
from the model. The relative variance components for the additive genetic 
effect presented in Table 2 corresponds to narrow sense heritability for a 
record on a single plot with three plants. The sum of relative contributions 
for additive genetic variance and non-additive genetic variance in model 
(2) corresponds to an estimate of broad sense heritability, again related to 
an individual three plant plot. 

Table 2. Variance components estimated using three different models *. 
 

Model a_e (1) Model a_p_e (2) Model a_gxd_e (3)  
a e a p e a gxd e 

Estimates 3.36 0.86 3.09 0.18 0.86 2.56 0.86 0.64 
SE 0.17 0.03 0.25 0.13 0.02 0.19 0.09 0.02 
Relative 0.80 0.20 0.75 0.04 0.21 0.63 0.21 0.16 
SE 0.01 0.01 0.04 0.03 0.01 0.03 0.02 0.01 
−2Log(L) 5582 5578 5311 

* a is the additive genetic variance, p is the non-additive genetic effect, gxd is the genotype by decade effect and e is 
the residual variance. Relative is the part of total phenotypic variance explained. −2Log(L) is the -2log of the likelihood. 

The estimated variance components for LB resistance assessed in 
different decades from model (4) are presented in Table 3. The phenotypes 
of the 1980s and 1990s were not included because only few records were 
available. The estimates of the additive variance and of the residual 
variance are different across the decades showing a clear decline from 
first to last decade. The lowest heritability estimate was observed for LB10, 
corresponding to the resistance challenge done in the 2010s. In contrast, 
the heritability estimates for LB00 and LB20 were both at 0.86. 
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Table 3. Variance components and SE estimated in each decade of challenge *. 

 LB00 LB10 LB20 
 a e a e a e 
Estimates 5.87 0.97 3.28 1.45 3.01 0.50 
SE 0.94 0.12 0.31 0.13 0.16 0.02 

Relative 0.86 0.14 0.69 0.31 0.86 0.14 
SE 0.03 0.03 0.03 0.03 0.01 0.01 

* LB00, LB10, LB20 corresponds to the challenges to LB done in the 2000s, 2010s and 2020s respectively. a is the 
additive genetic variance and e is the residual variance. Relative is the part of total phenotypic variance explained. 

The genetic correlations between the resistance traits measured across 
different decades of challenge are presented in Table 4. The correlation 
ranged from 0.57 to 0.91, with LB00 and LB10 showing the highest 
correlation. While LB10 and LB20 also showed a high correlation, they 
may still be considered as distinct traits. The genetic correlation between 
LB00 and LB20 appeared relatively small compared to the other pairs. This 
observation corroborates the presence of significant genotype-by-decade 
interaction. 

Table 4. Genetic correlations between LB-resistance from different decades of challenge *. 

 LB00 LB10 LB20 
LB00 1.00 - - 
LB10 0.91 (0.06) 1.00 - 
LB20 0.57 (0.11) 0.75 (0.04) 1.00 

* LB00, LB10, LB20 corresponds to the challenges to LB done in the 2000s, 2010s and 2020s respectively. 

GWAS 

Three chromosome regions significantly associated with LB resistance 
were found and results are summarized in Table 5. The genome regions 
with significant effects on LB resistance are located on chromosomes 5, 9 
and 1. 

Table 5. QTLs significantly associated with resistance to LB *. 

QTL Chr Position Top-SNP (bp) Genetic Variance Explained by Top-SNP (%) −Log(P) Top-SNP MAF 
QTL5 5 4726087 5.96 12.84 0.22 
QTL9 9 62365725 4.87 8.40 0.06 
QTL1 1 68451137 2.34 5.99 0.19 

* Chr is the chromosome, Position Top-SNP is the position of the most significant SNP in the QTL, Genetic variance 
explained by Top-SNP is the additive genetic variance explained by the Top-SNP, Log(P) Top-SNP is the negative log of 
the p-value of the most significant SNP in the QTL and MAF is the minor allele frequency in our population for the 
Top-SNP. 

TOP-SNP are defined here as the most significant SNP in a genomic 
region defined as a QTL. We determined that there were 3 chromosome 
regions with significant effects on LB resistance so there were three TOP 
SNP, one on chromosome 5, one on chromosome 9, and another SNP on 
chromosome 1. Even though the QTL on chromosome 5 is known to be 
linked with maturity [26] we also looked at its effect on LB. Each of the QTL 
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explained 5.96, 4.87 and 2.34 percent of the total additive genetic variance 
in LB-resistance, respectively. 

The effects of different number of alleles in each of the TOP-SNPs are 
shown in Figure 1. In the population studied, the number of copies of the 
minor allele of Top SNP of QTL5 on chromosome 5 confers a negative 
impact on resistance to LB with a clear additive dosage effect. For Top SNP 
of QTL9 an increased number of copies of the minor allele leads to 
increased resistance to LB which also seems to be a dosage effect were 
having one more of the alternate allele confer higher resistance to LB. The 
alternative allele of Top SNP of QTL1 seems to confer advantages for 
resistance to LB, where all heterozygous clones have an increased 
resistance to LB and the gene, therefore, appear to be dominant. No clones 
were homozygous for the alternative allele. However, it is complicated to 
draw conclusion on the effects of the number of alleles on the raw 
phenotype because of the low frequencies of the genotypes with at least 
three copies of the minor allele. In this population, the frequency of the 
beneficial allele was 0.78 for the Top-SNP of QTL5, 0.06 for the Top-SNP of 
QTL9 and 0.19 for the Top-SNP of QTL1. 

 

Figure 1. Boxplot of phenotype at identified QTL *; * On the x axis are the genotypes (number of alleles of 
the minor allele) at the TOP-SNP and on the y axis is the average phenotypic value for all individual 
genotypes. On the top of each box is the number of clones with this specific genotype. 

Prediction of Breeding Values 

The results of cross validation of models for prediction of breeding 
values are presented in Table 6. The prediction accuracies evaluated as the 
correlation between yc and EBVreduced ranged from 0.56 to 0.75. Accuracies 
were similar when using PBLUP, GBLUP or QTL-PBLUP but were markedly 
higher for the QTL-GBLUP model. The inflation of the distribution of 
predicted breeding values ranged from 0.91 to 1.32. Overall, for all the 
models the breeding values were deflated except for the GBLUP where 
they were inflated. 
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The correlation between EBVfull and EBVreduced ranged from 0.70 to 0.90. 
Accuracies were similar when using PBLUP or QTL-PBLUP but were higher 
for the models where genomic information was included and especially 
for the QTL-GBLUP model. The regression indicating dispersion of the 
predicted breeding values ranged from 0.96 to 1.18. 

When associated with the genomic relationship matrix, adding Top-
SNP of the three QTL identified as fixed regression into the model led to a 
considerable gain in accuracy. While no gain was observed when PBLUP 
and QTL-PBLUP model were compared. 

Table 6. Accuracies and inflations of the breeding values predicted using four different models *. 

  PBLUP GBLUP QTL-PBLUP QTL-GBLUP 
Correlation with EBVreduced yc 0.62 (0.10) 0.58 (0.08) 0.56 (0.11) 0.75 (0.08) 

EBVfull 0.74 (0.04) 0.82 (0.05) 0.70 (0.09) 0.90 (0.05) 
Inflation (Slope of Regression on EBVreduced) yc 1.28 (0.09) 0.91 (0.04) 1.32 (0.13) 1.25 (0.03) 

EBVfull 1.18 (0.06) 0.96 (0.02) 1.15 (0.11) 0.99 (0.03) 

* yc is the phenotype corrected with the fixed effect and ebvfull is the breeding value estimated with the full dataset. 
Both were correlated with ebvreduced which is the breeding value estimated while the phenotype of the validation 
population was removed. the inflation was computed as the slope of the regression of yc or ebvfull on the ebvreduced. 

Breeding Values and Genetic Trend 

Predicted breeding values from model (3), where a genotype by decade 
interaction effect has been included in the model were used in 
investigating the genetic trend for LB resistance. Only a few varieties 
created in the early years of the breeding program had been tested for LB 
resistance. It is also important to note that some of the varieties presented 
were included in the test in several years. Indeed, the varieties used as 
spreader rows have been used across many years, like for example the 
Bintje variety which has been used over all the 36 years. Moreover, many 
varieties have related varieties which have been tested as well, leading to 
more accurate breeding values for these clones. 

The estimated genetic trends for LB resistance are shown in Figure 2. 
No clear trend in the breeding values was observed. It does not seem like 
there has been any efficient selection for LB resistance as the mean did not 
change significantly. However, there is an increase in variation of the 
breeding values with time and we see an increase in number of more 
resistant (fully or not) varieties from the 2000s with an acceleration from 
2010. 
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Figure 2. Genetic trend for LB resistance *。* Points are the breeding values estimated using model 3 for 
each of the varieties. Line is the average breeding value per year of first appearance in the breeding 
program. 

DISCUSSION 

The comparison of the univariate models gave very strong support for 
model (3), which includes a genotype by decade interaction that accounts 
for 21 percent of all phenotypic variance in LB resistance. This significant 
contribution of genotype-by-time interaction to LB resistance variance has 
been previously reported [24]. The literature reports a wide range of 
heritability estimates for LB resistance from 0.31 to 0.85 [22–25,35]. 
Several factors could explain this variability, such as differences in test 
procedures and trait definition, in the plant material tested, in the 
pathogens used for inoculation, or in the methodology used for estimating 
variance components. In this study the estimated narrow sense 
heritability defined at the single plot level is very high (0.63) providing a 
solid basis for selection for resistance towards Pi based on general 
polygenic breeding values. However, the considerable amount of genotype 
by decade interaction suggests that resistance could fluctuate over time, 
potentially due to evolution in the disease agent or due to selective 
breeding in the tested varieties. A stronger focus a specific pool of parents 
may also have contributed to the decrease in genetic variance over time. 
Similar results were found by [24], who found significant genotype-by-
year interaction even when experiments were conducted over a much 
shorter time span than our study. However, yearly effects tend to be 
strongly affected by differences in weather from year to year, an effect 
that is expected to be limited when decades are considered. LB resistance 
measured across different decades shows very high heritability within 
each decade, but the genetic correlations between resistance in different 
decades are significantly lower than unity, particularly between the 2020s 
and earlier decades. This likely reflects a change in the Pi pathogen, rather 
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than the varieties themselves, since limited selection for LB resistance 
appears to have occurred in the population. In our study, data collection 
spanned from the 1980s to 2023, with at least seven different Pi pathotypes 
identified in Denmark between 2006 and 2022 [28]. This means that 
resistance may reduce or break down due to evolution in Pi. However, the 
model used to predict breeding values includes a genotype by decade 
interaction and this provides breeding values averaged over all the 
decades/years involved and this is expected to provide a more general 
resistance that is not easily circumvented by the Pi. The estimate of 
additive genetic variance and especially the estimate of residual variance 
reduced over the decades investigated. Genetic and environmental 
variances decreased over time and genetic correlations between distant 
decades were significantly lower than unity. Again, this indicates a change 
in the Pi genotypes evolved as there are strong genetic links between 
clones tested in different decades. However, genetic correlations were 
sufficient to ensure lasting genetic response for LB resistance. One of the 
limitations in our study was the scarce amount of data registered in the 
early years of the breeding program. Acquiring more data per year could 
help to dissect the genotype by decade interaction, as several factors could 
have contributed to the interaction. Furthermore, in future testing, a 
thorough characterization of Pi genotypes involved would be of 
considerable interest, potentially combined with specific testing of 
resistance toward well characterized Pi genotypes. 

The absence of genetic trend (Figure 2) implies that selection for LB 
resistance has been limited during the period studied. As previously 
discussed, this might result from sequential phenotypic selection and/or 
because of the use of old material as parents in later years. Resistance 
development has relied heavily on R-genes, which has been utilized since 
the introgression of R-genes identified in wild potatoes from South 
America. However, the R-genes are not always a source of long-lasting 
resistance [9,36]. For example, the pathotype EU_41_A2 acquired the 
ability to overcome the resistance coming from several R-genes [36]. One 
proposed strategy has been to accumulate more than one R-genes in a 
single variety, which is the pyramiding of R-genes approach [14]. In theory, 
if a single clone carried the beneficial allele for four R-genes, it would 
become virtually fully resistant to the pathogen targeted [18]. However, 
this implies for that all the R-genes are 100% effective, which is likely 
unrealistic [18]. In this study only a few genomic regions affecting LB 
resistance were identified. This could be because only few resistance genes 
were present in the population or because they are not effective in the 
population studied. The latter reason seems most likely as it takes many 
generations to make a tetraploid population homozygous for a resistance 
allele. 
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The three QTL identified in this study explained all together 13% of the 
additive genetic variance for LB resistance. It means that most of the 
additive genetic variance in LB resistance is due to the polygenic 
background, i.e., genes with small effects that cannot be individually 
identified in our data. 

One challenge in selection for LB resistance, is that the loci having a 
positive effect for resistance may lead to a negative response for other 
traits of interest. This could explain the low allele frequency of the positive 
allele for LB resistance for QTL9 and QTL1. For example, the pleiotropy 
associated with a region on chromosome 5, which affects both maturity 
and LB resistance, is well-documented [26]. To address this, multi-trait 
evaluation models should be developed to estimate and exploit genetic 
correlations between traits, and appropriate economic weights should be 
assigned to account for potential unfavorable correlations between traits 
of economic importance. Cloning of the genes involved would also aid in 
the management of LB resistance. 

The accuracy of breeding values predicted from pedigree information 
or from genomic information was very high. This is not surprising due to 
the high heritability of LB resistance observed and because most varieties 
will have many relatives that were also tested. Because of this resemblance 
between the training and the validating population, a high prediction 
accuracy is expected. The advantage of using a GBLUP model is relatively 
limited because of the high heritability of LB resistance and because of the 
cross-validation strategy which also yielded high accuracies with PBLUP. 
However, in forward prediction of breeding values for new crosses with 
few or no close relatives tested a greater advantage of GBLUP model is 
expected. Moreover, we had access to a deep pedigree allowing accurately 
tracking the history of the population. The correlation between EBVfull and 
EBVreduced indicates the relative change in accuracy when a clone is having 
its own phenotype removed. The drop in accuracy is relatively small 
especially for the GBLUP model. This means that if a line is genotyped it is 
possible to accurately predict its LB resistance before testing this line for 
LB resistance. Enciso-Rodriguez et al (2018) [24] has drawn the same 
conclusion from their study. This situation provides excellent possibilities 
for early selection for LB resistance based on such a combined model. Such 
a model would lead to a stratified testing of new (and older) clones to 
update the training population and the use of intense selection among all 
genotyped individuals. Moreover, the QTL-GBLUP model show that while 
having own phenotype, genomic information does not improve accuracy 
of prediction for LB resistance, but incorporating extra information on the 
genetic architecture of LB resistance could be highly relevant. These 
results must be interpreted with some caution as the QTL were identified 
on the entire population, which is also the training population, and this 
may tend to provide too optimistic results, even though the effects were 
estimated in the training population only. Even though clear genotype-by-
year interaction was observed, selection for LB resistance is still expected 
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to have a lasting effect but continuous testing for LB resistance is needed 
to identify lack of resistance toward new Pi strains. 

CONCLUSIONS 

The narrow sense heritability of resistance to LB in potato was large 
and this shows that results of resistance tests can be used for efficient 
selection for LB resistance. The resistance changed over time as reflected 
in a significant interaction between genotype and decade of testing, an 
interaction that most likely is due to evolution in the Pi. However, the 
genetic correlation between resistance in different time periods is still 
substantial so that selection effects will be persistent but potentially will 
reduce over time. Consistent testing of new lines for resistance is therefore 
needed. A GWAS study identified three genomic regions that affected 
resistance toward LB. In total these genomic regions explained 13% of the 
additive genetic variance in LB resistance. I.e., most of the genetic variance 
in LB resistance is polygenic and obviously all genetic variation should be 
used in selection for LB resistance. Extending models so that both 
identified genomic regions and polygenic variation were used in 
predicting breeding values clearly yielded the most accurate selection 
criteria. 
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