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ABSTRACT

Genomic selection (GS) is a core strategy in modern breeding programs,
yet the rapid expansion of statistical, machine learning (ML), and deep
learning (DL) models has made systematic evaluation and practical
deployment increasingly challenging. To address these issues, we
developed MultiGS, a unified and user-friendly framework that integrates
linear, ML, DL, hybrid, and ensemble GS models within a standardized and
computationally efficient workflow. MultiGS is implemented through two
complementary pipelines: MultiGS-R, a Java/R pipeline implementing 12
statistical and ML models, and MultiGS-P, a Python pipeline integrating 17
models including five linear models, three ML approaches, and nine
recently developed DL architectures. We benchmarked MultiGS using
wheat, maize, and flax datasets representing contrasting prediction
scenarios. Wheat and maize were evaluated using random training-test
splits within the same population, reflecting suitable conditions for
assessing model capacity and scalability. Under these scenarios, several
DL, hybrid, and ensemble models achieved prediction accuracies
comparable to or exceeding those of RR-BLUP and GBLUP. In contrast, the
flax dataset represented a true across-population prediction scenario with
limited training set size and strong population structure. In this
challenging context, classical linear models provided stable baselines,
while a subset of DL architectures, particularly graph-based models and
BLUP-integrated hybrids, demonstrated comparatively improved
generalization across populations. Comparisons with previously
published DL tools showed that models implemented in MultiGS achieved
comparable or improved prediction accuracies while requiring lower
computational cost, enabling routine retraining and large-scale evaluation.
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Collectively, MultiGS supports scenario-specific model selection and
provides a practical platform for deploying genomic prediction under
realistic breeding conditions. The software is freely available on GitHub
(https://github.com/AAFC-ORDC-Crop-Bioinformatics/MultiGS).

KEYWORDS: genomic selection; haplotype; principal component;
prediction accuracy; cross-validation; across-population prediction;
machine learning; deep learning; breeding

ABBREVIATIONS

APP, across-population prediction; BL, Bayesian LASSO; BLUP, best linear
unbiased prediction; BN, batch normalization; BRR, Bayesian ridge
regression; CNN, convolutional neural network; Conv, convolution (layer);
CV, cross-validation; DL, deep learning; FC, fully connected (layer); FFN,
feed-forward network; GBLUP, Genomic BLUP; GCN, graph convolutional
network; GAT, graph attention network; GEBV, genomic estimated
breeding value; GELU, Gaussian Error Linear Unit; GNN, graph neural
networks; GS, genomic selection; HAP, haplotype; LD, linkage
disequilibrium; KNN, k-nearest neighbors; MHA, multi-head attention; ML,
machine learning; MLP, multilayer perceptron; OOF, out-of-fold; PC,
principal component; PCA, principal component analysis; ReLU, rectified
linear unit; RFR, Random Forest Regression; RR-BLUP, Ridge Regression
Best Linear Unbiased Prediction; RKHS, Reproducing Kernel Hilbert Space;
SAGE, sample and aggregate (GraphSAGE); SNP, single nucleotide
polymorphism; VCF, variant call file; TKW, thousand-kernel weight; GW,
grain width; GH, grain hardness; GP, grain protein; GL, grain length; DTT,
days to tassel; PH, plant height; EW, ear weight; DTM, days to maturity;
OIL, oil content

INTRODUCTION

Genomic selection (GS) has become a core strategy in modern plant and
animal breeding, enabling the prediction of breeding values using
genome-wide markers and accelerating genetic gain through reduced
cycle time [1,2]. Since its introduction, a wide range of statistical, machine
learning (ML), and deep learning (DL) models have been developed to
improve prediction accuracy (PA), typically measured as the Pearson
correlation coefficient between predicted and observed phenotypes.
Traditional linear models such as Ridge Regression BLUP (RR-BLUP) and
Genomic BLUP (GBLUP) remain widely adopted due to their simplicity,
computational efficiency, and strong baseline performance [3,4], while
Bayesian approaches, including Bayesian Ridge Regression (BRR),
Bayesian LASSO (BL), and BayesA/B/C, provide additional flexibility in
modeling heterogeneous marker-effect distributions [5,6].

ML approaches such as random forest, support vector machines,
gradient boosting, and regularized regression have expanded the
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analytical landscape of GS by capturing nonlinear relationships and
higher-order interactions among markers [7,8]. More recently, DL
architectures, including multilayer perceptrons (MLP), convolutional
neural networks (CNN), recurrent networks, attention-based models,
transformers, and graph neural networks (GNNs), have shown promise for
capturing nonlinear effects, epistasis, and structural dependencies among
markers [9-12]. This has led to the development of numerous DL-based GS
methods, such as DeepGS [9], G2PDeep [13], DeepGP [14], DNNGP [15],
GPformer [16], Cropformer [17], GEFormer [18], iADEP [19], WheatGP [20],
SoyDNGP [21] and DPCformer [22], each exploring different architectural
designs and reporting improvements relative to traditional models under
specific datasets or validation schemes.

Despite this rapid methodological progress, several limitations
continue to hinder the broad adoption of DL-based GS methods in practical
breeding pipelines. Many existing tools provide only partial or research-
oriented implementations, with fragmented codebases, inconsistencies
between published descriptions and actual source code, limited
documentation, or incomplete end-to-end workflows. As a result,
reproducibility and usability are often compromised, making integration
into routine breeding workflows difficult. Moreover, many DL tools
require substantial expertise in Python, PyTorch [23], graphics processing
unit (GPU) computing, or Unix/Linux environments—skills that are
uncommon among breeders and applied geneticists. Consequently,
although DL models show promise, their accessibility to breeding
programs remains limited.

A second challenge arises from inconsistent benchmarking practices
across studies. Reported improvements over RR-BLUP, GBLUP, or other
baselines often depend on differences in software implementations,
preprocessing procedures, hyperparameter choices, or validation
strategies. Based on our experience implementing both R- and Python-
based versions of standard GS models, even nominally identical methods
can yield substantially different prediction accuracies depending on
software environments and analytical settings. These inconsistencies
make it difficult to determine whether a DL model consistently
outperforms existing approaches or simply performs well under a specific
configuration. The field therefore lacks a wunified, reproducible
benchmarking framework that supports diverse model families under
standardized evaluation procedures.

To address these limitations, we developed MultiGS, a pair of
complementary, user-friendly genomic prediction platforms that: (1)
integrate a broad spectrum of GS models, ranging from classical linear
mixed models to advanced ML, DL, hybrid and ensemble architectures; (2)
provide standardized workflows for data preprocessing, cross-validation
(CV), across-population prediction (APP), and post-analysis; and (3)
support multiple marker types, including single nucleotide
polymorphisms (SNP), haplotypes (HAP), and principal components (PC).
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In this study, we describe the design and implementation of the MultiGS
framework and evaluate its performance across multiple datasets
representing distinct breeding scenarios. Our results show that the DL
models implemented within the MultiGS framework can achieve
prediction accuracies (PAs) comparable to RR-BLUP and, in some settings,
exceed those of GBLUP, consistent with recent evidence that DL
approaches can be competitive with traditional GS models under
appropriate conditions. By integrating DL models alongside established
linear and ML approaches within a unified and reproducible framework,
MultiGS emphasizes scenario-specific model selection rather than
advocating a single optimal method. Collectively, MultiGS bridges
methodological innovation and practical usability, offering an integrated
platform to support genomic selection research and facilitating
deployment in real-world breeding programes.

MATERIALS AND METHODS
Overview of the MultiGS Framework

The MultiGS framework was developed to provide an integrated and
reproducible platform for GS as the field expands from traditional mixed
models towards increasingly diverse ML and DL approaches. In particular,
MultiGS places strong emphasis on the systematic evaluation of nine DL
architectures that capture nonlinear, local, and graph-structured
genotype—phenotype relationships beyond the assumptions of classical
linear methods. Existing GS pipelines often require users to navigate
multiple software tools with inconsistent workflows and incompatible
preprocessing procedures, making fair comparison and practical
deployment of DL models especially challenging. MultiGS resolves these
limitations by offering a unified ecosystem that standardizes data
handling, model execution, cross-validation, and result summarization
across statistical, ML, and DL models. The framework supports three
marker types derived from SNP genotypes: SNP, HAP, and PC, and adopts
a consistent input-output structure across all implemented algorithms,
enabling direct benchmarking of classical models against advanced DL
architectures.

MultiGS is organized into two complementary pipelines. MultiGS-R
provides access to classical GS and Bayesian methods implemented in R
serving as robust baselines widely used in breeding programs. MultiGS-P
substantially extends the analytical scope by implementing advanced ML
methods and nine DL models, including fully connected networks,
convolution-attention hybrids, graph neural networks, and BLUP-
integrated hybrid architectures. These DL models were designed to
explicitly target key challenges in GS, such as nonlinear marker effects,
local linkage disequilibrium (LD) patterns, and population structure,
within a common and reproducible framework.
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Both pipelines share the same design logic, allowing users to evaluate
linear, ML, and DL models under identical preprocessing steps, training
configurations, and accuracy metrics. Detailed descriptions of the R and
Python pipelines are shown in Figure 1. To ensure user-friendliness,
MultiGS employs a standardized input-output format controlled by a
configuration file. Users can flexibly select any combination of models,
marker types, and evaluation modes (model benchmarking or prediction)
simply by modifying configuration flags, without altering their data
preparation workflow. This design enables breeders and researchers to
focus on biological interpretation and breeding decisions while facilitating
rigorous assessment of advanced DL models alongside established GS
approaches.
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Figure 1. Schematic overview of the genomic prediction platform used to predict the genomic estimated
breeding values (GEBVs) of new breeding lines with MultiGS-R and MultiGS-P. The reference test lines with
phenotypic data and the dotted box containing phenotypic data from the test population are optional and
used only for model evaluation and model selection when available.
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MultiGS-R

MultiGS-R is the R-based pipeline for statistical and ML models. It
integrates twelve widely used GS models through the rrBLUP [4], BGLR [6],
e1071 [24], and randomForest [25] packages. These include linear mixed
models such as RR-BLUP and GBLUP, Bayesian regression models
including BRR, BL, and BayesA/B/C, random forest algorithms, SVM, and
RKHS methods (Table S1). MultiGS-R automates the core steps of GS
analysis—genotype and phenotype preprocessing, model training,
prediction, and accuracy assessment while maintaining consistent output
formats across models. This pipeline provides a stable and accessible
environment for breeders and researchers who require reliable and
interpretable models without the need for extensive scripting.

MultiGS-P

MultiGS-P implements an extensive suite of ML and DL models using
Python, scikit-learn [26], and PyTorch [23]. The pipeline includes linear
and regularized models (RRBLUP-equivalent Ridge, ElasticNet, and BRR),
tree-based learners (Random Forest Regression), and gradient boosting
methods (XGBoost and LightGBM) (Table S2). In addition to these
conventional ML approaches, MultiGS-P implements nine recently
developed DL architectures, ranging from fully connected networks and
convolution-attention hybrids to multiple graph neural network variants
(Table 1). The pipeline further integrates hybrid methods that combine RR-
BLUP with deep networks (DeepResBLUP and DeepBLUP), as well as a
stacking-based ensemble learner (EnsembleGS) capable of fusing
predictions from arbitrary base models (Table 1). Together, this collection
provides a comprehensive modeling environment in which additive,
nonlinear, LD-aware, graph-structured, and hybrid genotype-phenotype
relationships can be evaluated within a unified and reproducible
workflow.

All DL models were systematically tuned during development to ensure
stable training and competitive performance across datasets. The default
hyperparameters for all models implemented in MultiGS-P are provided
in the template configuration files and are summarized in Table S3.

The DL architectures are grouped into fully connected, graph-based,
hybrid, and BLUP-integrated categories. Each architecture is described in
the Supplementary Methods with documentation of its design rationale
and intended uses (Figures S1 and S2). All ML and DL models in MultiGS-P
are fully configurable through a centralized configuration file (Table S3),
allowing users to adjust hyperparameters, model depth, learning
schedules, and regularization settings without modifying source code. This
design facilitates systematic benchmarking and fair comparison across
diverse model classes while supporting flexible adaptation to a range of
datasets and breeding scenarios.

Crop Breed Genet Genom. 2026;8(1):e260004. https://doi.org/10.20900/cbgg20260004



Crop Breeding, Genetics and Genomics

7 of 26

Table 1. Summary of nine deep learning model architectures implemented in MultiGS-P.

Model Architecture Type Main Components Key Properties
DNNGS Fully connected deep Input dropout; 4 fully connected blocks (512-256-  Efficient nonlinear modeling of
neural network 128-64) with ReLU and dropout; optional batch genotype features; simple and fast
normalization; final linear prediction head baseline DL model
MLPGS MLP with Input dropout; 2 dense blocks (128-64) with Stabilized deep MLP with improved
normalization and GELU/ReLU, dropout, layer normalization; optional training dynamics and gradient flow
residual connections  residual skip connections; output normalization +
final dense layer
GraphConvGS Graph Convolutional ~ KNN graph construction; 2xGCNConv + layer norm + Models sample-to-sample similarity;
Network (GCN) ReLU + dropout; node-wise MLP effective for population-structured GS
data
GraphAttnGS Graph Attention KNN graph; 2xGATConv (multi-head attention) + Learns adaptive attention weights over
Network (GAT) layer norm + dropout; node MLP neighbors; flexible modeling of

heterogeneous relationships

GraphSAGEGS GraphSAGE

KNN graph; 2xSAGEConv + layer norm + dropout;

Inductive, scalable, and robust across

neighborhood node MLP populations; robust performance on
aggregator large datasets
GraphFormer GraphSAGE + 2xSAGEConv - node embeddings - Transformer Captures both local graph structure
Transformer hybrid  encoder — MLP and global node interactions for
enhanced representation learning
DeepResBLUP Residual hybrid Fit RRBLUP baseline; DL model fits residual signal; Effective additive baseline with
(RRBLUP + DL) weighted combination of linear and nonlinear nonlinear correction; interpretable and
predictions stable
DeepBLUP Integrated BLUP-in-DL. RRBLUP-like linear layer — 3 dense blocks (256- Deep refinement of BLUP with modern
architecture 128-64) with GELU, batch norm, dropout, and DL structure; robust performance for
residual connections; optional skip link from additive + mild nonlinear effects
RRBLUP output
EnsembleGS Stacked ensemble Trains multiple base models; collects OOF Most robust across datasets; leverages

predictions; meta-learner (linear regression) for
final prediction

complementary strengths of diverse
model families

Hyperparameter Tuning of Deep-Learning Models

All DL models were tuned during development using the flax training

dataset, which represents a challenging scenario characterized by a small
training population and strong population structure. This setting more
closely reflects realistic breeding conditions than within-population
validation and therefore provides a conservative basis for model
configuration. Hyperparameters identified under this conservative setting
were subsequently applied uniformly to all datasets, including wheat2000,
maize6000, and flax287. No dataset- or trait-specific tuning was
performed, ensuring fair and consistent comparison among model classes.

Although these hyperparameters are not necessarily optimal for every
species or dataset, this strategy was adopted to avoid dataset-specific
manual tuning that could introduce bias and compromise comparability
across models. Moreover, this approach reflects a realistic usage scenario
in breeding programs, where extensive hyperparameter optimization is
often impractical due to limited computational resources or technical
expertise.

Hyperparameter tuning was conducted using a grid search strategy,
and the resulting default settings are provided in the template
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configuration files and summarized in Table S3. For users who wish to
further optimize model performance for specific datasets, a utility script
(hyperparameter_optimizer.py) is provided to facilitate targeted tuning of
key model parameters.

Marker Types

MultiGS supports three genomic feature representations, SNP, HAP,
and PC, allowing users to evaluate model performance across alternative
marker types. Here, “SNP” is used as a representative marker category and
encompasses any biallelic or numerically encoded molecular markers
compatible with matrix-based genomic prediction models, including
genotyping-by-sequencing (GBS), diversity arrays technology (DArT),
simple sequence repeat (SSR), and amplified fragment length
polymorphism (AFLP) markers. These marker types capture
complementary aspects of genomic variation and provide flexibility for
modeling different genetic architectures.

The SNP marker type uses the raw genotype matrix, encoding markers
as additive allele counts. Although referred to here as SNP-based, this
representation can accommodate any bi-allelic or multi-allelic markers
derived from different genotyping technologies, provided they are
numerically encoded. This marker type is the most widely used in genomic
selection and serves as the baseline input for most models.

The HAP marker type aggregates adjacent SNPs into haplotype blocks,
enabling models to capture local linkage-phase information and multi-
allelic patterns that may correlate more strongly with causal loci.
Haplotype markers are particularly useful in regions with strong LD or
when phased or block-based genotype data are available. Both pipelines
used additive dosage coding with values 0, 1, and 2: code 0 (0/0) for
homozygous reference alleles, code 1 (0/1, 0/2, ...) for heterozygous
genotypes with one alternative allele, and code 2 (1/1, 2/2, ...) for
homozygous alternative alleles. Missing data (./.) are assigned code -1 and
are imputed using the mean algorithm or Beagle software [27]. Haplotype
blocks were estimated with the rtm-gwas-snpldb tool in RTM-GWAS
v2020.0 [28], which applies the Haploview “Gabriel” confidence-interval
algorithm [29,30]. This algorithm identifies haplotype blocks based on
statistically supported LD confidence intervals and has been widely
adopted for defining robust LD blocks. Pairwise LD was measured using D’
with 95% confidence intervals, and haplotype blocks were defined when
>95% of informative pairs were in strong LD (CI(D’) lower > 0.70, upper >
0.98).

The PC marker type summarizes genome-wide marker information
using PCs derived from SNP data. PCs capture major population structure
and relatedness patterns while reducing dimensionality. This
representation provides a compact genomic representation and may
improve stability or computational efficiency in certain models. The first
N PCs explaining 95% (configurable) of the total variance are retained for
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prediction. The number of retained PCs varied across datasets but
typically ranged between ~20 and 200.

All three marker types are constructed automatically within both
MultiGS pipelines, ensuring consistent preprocessing and compatibility
across model families.

Model Evaluation

MultiGS provides standardized evaluation procedures to ensure
reliable comparison of models, marker types, and data partitions. Both
pipelines implement CV schemes commonly used in genomic prediction
studies, including random k-fold CV for assessing general predictive
performance within populations. In addition, structured CV options are
supported for breeding programs involving multiple families or
subpopulations. CV routines are fully automated, with users specifying
fold number and seed settings to maintain reproducibility. Beyond within-
population evaluation, MultiGS explicitly supports across-population
prediction (APP), a realistic breeding scenario in which training and target
populations differ genetically. In APP mode, models are trained using a
designated reference population and evaluated on an independent target
population without phenotypic information during training.

Prediction accuracy (PA) was consistently quantified as Pearson’s
correlation coefficient between predicted and observed values. This
metric was used uniformly across all models, marker types, and datasets
to enable direct comparison. MultiGS also generates prediction summaries
and visualization files to facilitate rapid comparison of model
performance. All result formats are identical across the R and Python
pipelines, enabling seamless benchmarking of statistical, ML, and DL
approaches.

Case Studies

To evaluate the performance of the models implemented in the MultiGS
pipelines, three genomic and phenotypic datasets, wheat, maize, and flax,
were analyzed. These datasets were selected to represent contrasting
breeding and prediction scenarios, ranging from within-population
evaluation to true across-population prediction.

The wheat dataset consisted of 2403 Iranian bread wheat (Triticum
aestivum) landrace accessions conserved in the CIMMYT Wheat Gene Bank
(https://hdLhandle.net/11529/10548918) [31]. Genotyping was performed
using 33,709 DArTseq presence/absence markers, coded as 1 (allele
present) or 0 (allele absent). Five traits, thousand-kernel weight (TKW),
grain width (GW), grain hardness (GH), grain protein (GP), and grain
length (GL), were evaluated. After removing accessions with missing
phenotypes, the remaining 2000 accessions were randomly divided into a
training population of 1,600 and a testing population of 400 (80:20 ratio).
After filtering using minor allele frequency > 5%; call rate > 80%, the
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retained 9927 markers were converted to VCF format for genomic
prediction analyses. This dataset is hereafter referred to as wheat2000.

The maize dataset was derived from the CUBIC hybrid population [32].
In total, 6210 F, hybrids (207 female x 30 male) were evaluated across five
environments in China during the 2015 growing season. Three agronomic
traits, days to tassel (DTT), plant height (PH), and ear weight (EW), were
measured, and best linear unbiased predictions (BLUPs) were calculated
across environments. Genomic data consisted of 10,000 SNPs randomly
sampled from ~4.5 million imputed markers available through the
ZEAMAP repository
(https://ftp2.cngb.org/pub/CNSA/data3/CNP0001565/zeamap/99_MaizegoR
esources/01_CUBIC_related/). After removing hybrids missing genotypic or
phenotypic records, the dataset comprised 5831 maize hybrids. These
hybrids were randomly partitioned into a training population of 4,664
hybrids (80%) and a testing population of 1167 hybrids (20%). This dataset
is hereafter referred to as maize6000.

To evaluate across-population prediction performance, a flax dataset
comprising 278 linseed accessions genotyped by whole-genome
sequencing was used as the training population (flax287) [33-35].
Approximately 1.7 million SNPs were available for model training. The test
population consisted of 260 inbred lines derived from multiple biparental
populations [33], representing a realistic breeding scenario in which
prediction targets differ substantially from the training population. These
test lines were re-genotyped by mapping short paired-end reads to the
latest flax reference genome, CDC Bethune v3.0 (NCBI accession
JAZBJT000000000; You et al., in preparation), yielding 43,179 SNPs, of
which 33,895 were shared with the training populations and used for
genomic prediction. Three key agronomic traits, days to maturity (DTM),
oil content (OIL), and PH, were evaluated.

Genetic diversity and population differentiation between training and
test sets across the three datasets are summarized in Table S4. Wheat2000
and Maize6000 exhibited negligible genetic differentiation between
training and test populations (FST = 0), consistent with random within-
population sampling. However, flax287 exhibited strong population
divergence (FST = 0.27), reflecting a true across-population prediction
scenario. Expected heterozygosity (He) was high in maize6000 (~0.38) but
markedly lower in wheat2000 and flax287 (~0.01-0.02), highlighting
substantial differences in genetic diversity among datasets.

To benchmark the performance of the MultiGS framework against
existing DL-based GS approaches, we selected four publicly available GS
tools representing diverse neural-network architectures: DeepGS
(convolutional neural networks) [9], CropFormer (CNN integrated with
self-attention) [17], WheatGP (CNN-LSTM-based feature extractors) [20],
and DPCFormer [22]. Because these tools differ in their required input
formats, preprocessing workflows, and output interfaces, direct
comparison is not straightforward. To ensure consistent evaluation across
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models, we developed customized wrapper programs for each tool. These
wrappers harmonized SNP marker data and phenotypic inputs, including:
(1) aligning samples between genotype and phenotype files, (ii) identifying
common markers between training and testing sets, (iii) converting VCF,
comma separated value (CSV), or matrix formats into tool-specific input
structures, and (iv) standardizing prediction outputs for downstream
comparisons. All tools were run using identical training/test splits and the
same set of single-trait prediction tasks. This unified preprocessing and
execution framework ensures a fair, reproducible comparison between
MultiGS models and previously published GS methods regardless of their

heterogeneous interfaces.

To ensure fair comparison with previously published DL tools that
require fixed input dimensions, dataset-specific adaptations were applied
where necessary. For WheatGP, the original implementation hard-coded
the Long Short-Term Memory (LSTM) input size as Istm_dim = 10,080,
corresponding to the reference dataset used in the original study. However,
the effective dimensionality of the LSTM layer depends on the number of
markers provided as input. To enable application across datasets with
varying SNP counts, we modified the implementation by replacing the
fixed input size with a dynamic formulation, Istm_dim = Y?_,8(g; — 4),
where g; denotes the number of SNP markers in the i-th group (five
groups in total, as defined in WheatGP). This modification allows the LSTM
input dimension to scale automatically with the number of available
markers, enabling consistent application across datasets without altering

model structure.

For CropFormer, the number of input markers is fixed at 10,000 by
design. To satisfy this constraint, random SNP subsetting or zero-padding
was applied as appropriate. Specifically, when datasets contained more
than 10,000 markers, a random subset of 10,000 SNPs was sampled; when
fewer markers were available, padding was used to reach the required
input size. The same procedure was applied consistently across the
wheat2000, maize6000, and flax287 datasets. Random sampling was

performed using fixed random seeds to ensure reproducibility.

RESULTS

Prediction Accuracy (PA) Across Models in the Wheat2000 Dataset

Using the wheat2000 dataset (1600 training and 400 independent test
lines), we evaluated all models implemented in MultiGS-P and MultiGS-R
and compared their performance with several published DL methods
(Figure 2; Table S5). Linear mixed-model baselines (RR-BLUP, GBLUP, BRR)
provided consistent reference performance across pipelines, with SNP-
based PAs ranging from ~0.53 to 0.76 depending on trait. Nearly identical
results across implementations confirmed reproducibility, while BGLR-
based GBLUP slightly outperformed rrBLUP-based implementations,
consistent with known differences in variance component estimation.
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Several ML models achieved prediction accuracies comparable to or
exceeding those of linear baselines. In particular, tree-based approaches
such as Random Forest, XGBoost, and LightGBM frequently ranked among
the strongest performers, achieving PAs of ~0.72-0.74 for GL and GW,
comparable to or slightly exceeding RR-BLUP. ElasticNet showed stable but
generally weaker performance and did not consistently outperform linear
models.

DL models demonstrated competitive but trait-dependent
performance. For high-heritability traits (GL, GW, TKW; h? = 0.83-0.88
[31]), most DL architectures achieved PAs comparable to those of top ML
models and RR-BLUP (typically ~0.70-0.74). Among these, GraphSAGEGS
and GraphFormer consistently outperformed other graph-based models,
while DNNGS showed stable performance across traits. For lower-
heritability traits (GH, GP), DL models slightly underperformed linear
baselines but still achieved reasonable accuracies (~0.45-0.60).

Hybrid approaches integrating RR-BLUP with DL, models ranked among
the strongest DL-based models. DeepResBLUP matched or slightly
exceeded RR-BLUP for GL, GW, and TKW, while DeepBLUP showed
similarly robust performance. The stacking-based ensemble model,
EnsembleGS, achieved consistently high accuracy across all traits (up to
~0.74), highlighting the benefit of combining complementary predictors.

Compared to published DL tools (DeepGS, CropFormer, WheatGP), the
top MultiGS models achieved comparable or higher PAs across all traits.
EnsembleGS, DeepResBLUP, and GraphSAGEGS consistently matched or
outperformed DeepGS, while CropFormer and WheatGP showed more
variable performance, particularly for GP.

Prediction Accuracy (PA) Across Models in the Maize6000 Dataset

Using the maize6000 dataset (4,664 training and 1,167 test lines), we
evaluated 17 MultiGS-P and 12 MultiGS-R models using SNP-, HAP-, and PC-
based markers across three traits (DTT, EW, PH) (Figure 2; Table S6).
Linear baseline models again performed strongly, particularly for DTT
and PH, with SNP- and HAP-based PAs consistently exceeding 0.92. For EW,
prediction accuracies were lower (~0.76-0.77) but remained among the
strongest results across model classes.

Tree-based ML models performed particularly well. XGBoost and
LightGBM achieved accuracies up to ~0.94 for DTT and ~0.93 for PH,
matching or slightly exceeding RR-BLUP, and ~0.78-0.79 for EW. In
contrast, classification-oriented models (SVC, RFC) consistently
underperformed for these continuous traits and were therefore less
competitive.
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Figure 2. Prediction accuracies (PAs) across 17 models implemented in MultiGS-P, 12 models implemented
in MultiGS-R (indicated by “(R)”), and several previously published deep learning models for three datasets.
Standard errors of PA are indicated on each bar. Models are categorized into Linear (blue), machine learning
(orange), deep learning (green), and hybrid (purple). RR-BLUP and GBLUP are highlighted in bold as baseline
models. Baseline models are shown in bold.

DL models achieved accuracies comparable to linear baselines for DTT
and PH, typically in the range of 0.91-0.93. GraphSAGEGS, GraphFormer,
DeepResBLUP, and DeepBLUP consistently ranked among the strongest DL
models. For EW, DL model performance was more variable; however,
hybrid models (DeepResBLUP, DeepBLUP) matched RR-BLUP performance
(~0.76-0.77), and GraphSAGEGS and EnsembleGS also performed
competitively.

Relative to published DL tools (DeepGS, CropFormer, DPCFormer,
WheatGP), the best MultiGS models achieved comparable or improved
accuracies across all traits. EnsembleGS, DeepResBLUP, DeepBLUP, and
GraphFormer matched or slightly exceeded DeepGS and CropFormer for
DTT and PH, while DeepBLUP and DeepResBLUP performed comparably
to the strongest previously published models for EW. Overall, MultiGS
achieved competitive DL performance while supporting a broader and
more flexible modeling environment.

Prediction Accuracy (PA) of Models for Across-Population Prediction
in the Flax287 Dataset

The flax287 dataset represents a substantially more challenging
scenario, combining a small training population (278 accessions) with
prediction in genetically narrow biparental populations (260 lines)
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exhibiting strong population structure and genetic differentiation
between training and test lines (Figure S3; Table S4). Across traits (DTM,
OIL, PH), prediction accuracies were lower and more variable than in
wheat2000 and maize6000 (Figure 2; Table S7). Haplotype-based models
consistently outperformed SNP- and PC-based ones, reflecting strong LD
structure in flax.

For DTM, all models showed limited predictive ability (HAP-based PAs
~0.20-0.41). Linear baselines were among the most stable performers
(~0.33-0.41). ML models did not improve upon these results, and DL
models showed high variability, with some architectures achieving
baseline-level accuracy while others performed poorly or negatively.
Previously published DL models exhibited similarly weak performance.

Conversely, the PAs for OIL were higher across all model families.
Linear models achieved PAs of ~0.60-0.66, while several ML and DL
models exceeded these baselines. DNNGS, GraphSAGEGS, GraphFormer,
and EnsembleGS achieved accuracies up to ~0.70-0.75, and GraphConvGS
reached the highest overall PA (~0.90). Hybrid models also performed well
across marker types. Among previously published DL tools, only
DPCFormer showed moderate performance, while others transferred
poorly to this across-population setting.

For PH, baseline accuracies reached ~0.61, with several DL and hybrid
models exceeding this level. DNNGS, GraphFormer, and DeepBLUP
achieved PAs up to ~0.66-0.70, while ElasticNet and LightGBM also
performed competitively. Previously published DL models again showed
inconsistent or weak performance.

In summary, the flax results underscore the strong effects of training
population size, population structure, and marker representation on
genomic prediction. Linear models provided stable baselines, while
selected DL and hybrid models, particularly those incorporating additive
genetic priors or graph-based models, offered advantages for OIL and PH.
These findings emphasize that DL benefits are trait- and context-
dependent and support the value of a diverse modeling portfolio within
the MultiGS framework.

Effect of Marker Type on Prediction Accuracy (PA)

Marker types had a consistent and measurable impact on PAs across
models and datasets implemented in MultiGS with particularly strong
effects observed in the flax287 across-population prediction scenario
(Figure 3; Tables S5-S7). Across all 29 models implemented in MultiGS,
HAP markers consistently matched or outperformed SNP- and PC-based
markers when haplotypes could be derived.

In the wheat2000 dataset, where chromosome-level SNP coordinates
were unavailable and haplotype construction was therefore not feasible,
PAs based on SNPs and PCs were largely comparable. Across five traits,
average PA differed only marginally between SNP- and PC-based models
(mean PA: SNP = 0.597, PC = 0.586), with trait-specific differences typically

Crop Breed Genet Genom. 2026;8(1):e260004. https://doi.org/10.20900/cbgg20260004



Crop Breeding, Genetics and Genomics 15 of 26

(A)

Prediction accuracy

0.7 1

e
k)
1

o
wn
1

(=]
N
1

o
w
L

0.2

0.14

Wheat2000

'VIaJkert
[ —
—1 PC

pe
P

within 0.01-0.02. These results indicate that both marker types captured
similar predictive signals in this dataset.

In comparison, for the maize6000 and flax287 datasets, where HAP
markers could be constructed, HAP markers consistently outperformed
both SNP and PC markers. In maize, haplotype-based models achieved the
highest PAs across all three traits, with an average PA of 0.831 compared
with 0.800 for PC-based models. Improvements were particularly notable
for EW (0.719 vs. 0.680) and PH (0.878 vs. 0.842), highlighting the value of
capturing local linkage disequilibrium (LD) in a genetically diverse hybrid
population.
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Figure 3. Prediction accuracies of three marker types—single nucleotide polymorphisms (SNP), haplotypes
(HAP), and principal components (PC)—across the 29 models implemented in both MultiGS pipelines in
different datasets. (A) the wheat2000 dataset, (B) the maize6000 dataset, and (C) the flax287 dataset.

The effect of marker type was most pronounced in the flax287 dataset,
which represents a true APP scenario. Across all three traits, HAP markers
substantially improved prediction accuracies relative to both SNP and PC
markers. HAP-based models improved PA by 0.12-0.26 compared with
SNPs and by 0.24-0.28 compared with PCs, depending on trait. SNP-based
models ranked second, while PC-based predictions consistently showed
the lowest accuracy and greater variability across models.

Taken together, these results demonstrate that haplotype markers
provide a more informative genomic representation than single-marker
or PC-based encodings when population structure is strong and training
and target populations differ. By preserving local LD patterns and multi-
allelic information, haplotype-based markers improve both prediction
accuracy and robustness in across-population genomic prediction,
particularly in small or structured breeding populations such as flax.
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Effect of Training Population Size on Prediction Accuracy

The relationship between PA and training population size was
evaluated using the maize6000 dataset, which provided training sets
ranging from 500 to 4500 individuals. Seven representative models were
assessed, including linear (R_RRBLUP), ML (LightGBM), DL (MLPGS,
DNNGS, GraphSAGEGS), and hybrid approaches (DeepBLUP, EnsembleGS).
Across all three traits (DTT, EW, and PH), PA increased consistently with
training population size, with rapid gains observed between ~500 and
2500 samples and continued improvement at larger sizes (Figure 4).

Although deep learning models are often assumed to require large
datasets, linear models also benefited from increased sample size.
R_RRBLUP achieved its highest accuracies at the largest training sizes and,
in several cases, matched or exceeded DL models beyond 4000 samples.
LightGBM showed strong scalability and frequently performed best for
traits with pronounced nonlinear components, particularly EW. The
hybrid model DeepBLUP exhibited stable gains comparable to R_RRBLUP,
whereas other DL models generally underperformed relative to the linear
baseline across most training sizes. Overall, these results demonstrate that
increased training population size leads to continued improvements in
genomic prediction accuracy across all model classes, regardless of model
complexity.
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Figure 4. Prediction accuracies of three traits in the maize6000 dataset across varying training sample sizes.
The full dataset contained 5831 samples, from which 4,664 lines (80%) were randomly selected as the
training population and 1167 lines (20%) as the test set. A random subset of 10,000 SNPs was used as
markers. From the 4,664 training lines, subsets of different sizes were randomly sampled and used to predict
the fixed set of 1167 test samples. Panels show results for: (A) days to tassel (DTT); (B) ear weight (EW); and

(O) plant height (PH).

Runtime Performance Across Models

Using the maize6000 dataset, we compared the computational
efficiency of 17 models implemented in MultiGS-P across linear, ML, DL,
and hybrid categories under both CPU and GPU environments (Figure
5A,B). In addition, four previously published DL models were evaluated
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separately (Figure 5C). Total runtime represents the average training time
across three traits.

Under CPU-only conditions, most linear and ML models completed
training within seconds to a few minutes across marker types, with RR-
BLUP, ElasticNet, RFR, XGBoost, and LightGBM showing consistently short
runtimes. However, Bayesian linear models (BRR) and R_GBLUP required
substantially longer runtimes, in some cases exceeding those of several DL
models, reflecting the computational cost of iterative Bayesian sampling
and mixed-model variance estimation rather than model complexity per
se.
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Figure 5. Runtime performance of deep learning models compared with linear and machine-learning
models under CPU and GPU environments on the high-performance computing server. A total of 17 models
implemented in MultiGS-P and four previously published tools were evaluated using the maize6000 dataset.
Total time represents the average training time required for model fitting of each trait. All benchmarks were
conducted across three traits. (A) and (B) Runtime (minutes) for 17 models under CPU and GPU
environments, respectively. (C) Runtime (minutes) for four previously published deep learning models

using SNPs.

DL models implemented in MultiGS-P showed moderate CPU runtimes,
with fully connected architectures generally faster than graph-based
models, which incurred additional overhead due to graph construction
and message passing. Hybrid models exhibited intermediate runtimes and
remained computationally feasible for routine use.

GPU acceleration substantially reduced training time for most DL
models, with reductions ranging from ~40% to more than 90%. However,
GPU acceleration provided little benefit for classical linear and ML models
and, in some cases, increased runtime due to data-transfer overhead and
workflow initialization cost. Among previously published CNN-based DL
models, CPU runtimes were markedly longer than those of all MultiGS-P
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models; although GPU acceleration reduced their training time when
supported, they remained computationally more demanding. While
absolute runtimes were influenced by system load at the time of
benchmarking, relative trends across model classes were consistent. These
results indicate that MultiGS-P achieves practical computational efficiency
for large-scale genomic prediction while supporting a diverse range of DL
and hybrid models.

DISCUSSION
Genomic Prediction Performance Across Practical Breeding Scenarios

The primary objective of MultiGS was not to advocate a single superior
genomic prediction model, but rather to provide a unified, practical,
decision-support framework for evaluating and deploying multiple GS
methodologies under realistic breeding scenarios. Across wheat2000 and
maize6000 datasets, where training and test sets were randomly sampled
from the same population, DL, hybrid, and ensemble models implemented
in MultiGS achieved PAs comparable to RR-BLUP and frequently exceeded
those of GBLUP. These results are consistent with previous reports
showing that non-linear models can match or marginally improve upon
linear mixed models when the training population size is sufficiently large
and population structure is well matched between training and testing sets
[10,36].

From a breeding perspective, however, such within-population
evaluations reflect an optimistic assessment of prediction performance.
Because training and test sets are drawn from the same population, these
evaluations closely resemble cross-validation (Table S4) and do not fully
capture the challenges of predicting truly new breeding lines in
deployment. By contrast, the flax287 dataset provides a realistic across-
population prediction case, characterized by a small training population
and evaluation in genetically narrow biparental populations. This setting
more closely reflects operational breeding programs, where PA often
declines sharply due to population divergence, limited training data, and
changes in LD patterns [5,37]. Under these conditions, linear and BLUP-
integrated hybrid models provide stable and reliable performance,
whereas the benefits of DL models are more context dependent.

The training population size analysis further supports these
observations. Using the maize6000 dataset, prediction accuracies
increased monotonically with training population size across all model
classes, with the largest gains occurring between approximately 500 and
2500 individuals (Figure 4). Notably, linear models such as RR-BLUP
continued to improve with increasing sample size and often matched or
exceeded deep learning models even at the largest training sizes,
highlighting that data availability remains a dominant driver of prediction
accuracy regardless of model complexity.
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Model Robustness Under Across-Population Prediction

Results from the flax287 dataset highlight a clear distinction between
model capacity and model robustness. Classical linear models, including
RR-BLUP, BRR, and Bayesian regressions, provided stable and
interpretable baseline performance across traits, particularly for DTM,
where prediction accuracy was uniformly low. This stability underscores
the continued relevance of linear mixed models in GS, especially for traits
dominated by additive genetic effects and for scenarios with limited
training data [1,3].

However, many pure DL architectures exhibited high variability and,
in some cases, poor or negative predictive performance in flax, reflecting
well-known limitations of high-capacity models under small sample sizes
and pronounced training-test distribution shifts. These results caution
against indiscriminate applications of DL models in breeding programs
without careful consideration of population structure and data
availability.

Notably, a subset of DL and hybrid models had improved robustness
under this challenging setting. Graph-based models (GraphSAGEGS,
GraphFormer) and BLUP-integrated hybrids (DeepBLUP, DeepResBLUP)
benefited from stronger inductive biases toward biologically meaningful
structure. Graph-based models operate on sample-level genetic
relationship graphs rather than raw marker effects, making predictions
less sensitive to population-specific LD patterns and allele-frequency shifts.
In particular, the inductive neighborhood aggregation in GraphSAGEGS
facilitates transfer of information to genetically divergent populations.
Similarly, BLUP-integrated hybrids preserve additive genetic effects by
anchoring predictions to a linear RR-BLUP component, allowing the deep
network to model only residual nonlinear signals. Together, these design
features contribute to enhanced robustness under across-population
prediction.

Comparison with Previously Published Deep Learning Models

Although DL models have been applied to GS since 2018 [10], beginning
with convolution-based models such as DeepGS [9], subsequent
developments have expanded to recurrent, attention-based, transformer,
and graph-based architectures [15,16,19,20,38-40]. Across studies,
reported prediction accuracies are generally comparable to, but not
consistently higher than, those obtained with linear baselines such as RR-
BLUP, particularly when training populations are large and marker
density is high. Despite methodological advances, many published DL-
based GS tools face practical limitations that hinder reproducibility and
routine adoption, including incomplete documentation, rigid input
requirements, discrepancies between published descriptions and
available code, and the lack of standardized workflows for preprocessing
and evaluation. In addition, computational constraints often necessitate

Crop Breed Genet Genom. 2026;8(1):e260004. https://doi.org/10.20900/cbgg20260004



Crop Breeding, Genetics and Genomics 20 of 26

fixed input dimensions, leading to ad hoc SNP subsetting or padding
[17,20,22].

In contrast, MultiGS imposes no explicit restrictions on marker number
and instead emphasizes biologically informed and computationally
efficient marker types. Haplotype and PC encodings reduce feature
dimensionality while preserving linkage disequilibrium and population
structure, improving training efficiency without arbitrary feature
selection. Graph-based models in MultiGS further reduce complexity by
operating on sample-level graphs rather than marker-level graphs.

Across wheat2000, maize6000, and flax287 datasets, DL and hybrid
models implemented in MultiGS achieved prediction accuracies
comparable to or exceeding those of previously published DL tools. While
previously published models performed well under within-population
validation, their performance declined in the flax across-population
scenario. Conversely, several MultiGS hybrid models showed greater
stability across datasets and prediction settings. These results suggest that
architectural complexity alone is insufficient for robust genomic
prediction; instead, models that integrate additive genetic effects with DL
refinement and emphasize generalizability are better suited to realistic
breeding scenarios. By providing a unified, configurable, and well-
documented framework, MultiGS addresses key limitations of existing DL-
based GS tools and facilitates fair benchmarking and practical deployment.

Computational Efficiency and Breeding Deployment

In practical breeding pipelines, computational efficiency is a critical
but often underappreciated factor. Most DL and hybrid models
implemented in MultiGS required less computational time than previously
published DL approaches while delivering comparable predictive
accuracy. This efficiency enables frequent model retraining as new
phenotypic data becomes available and facilitates large-scale
benchmarking across traits, populations, and marker types.

From an operational perspective, when PA is similar, reduced
computational burden becomes a decisive advantage. The ability to
execute MultiGS models under CPU-only environments further lowers
barriers to adoption, particularly for public breeding programs with
limited computational infrastructure. These considerations are essential
for translating methodological advances into routine breeding practice.

Implications for Model Selection and Tool Development

Taken together, the results reinforce several key principles for genomic
selection. First, no single model is universally optimal across traits or
prediction scenarios. Second, classical linear models remain strong and
reliable baselines, particularly for across-population prediction. Third, DL
models can offer advantages for certain traits and datasets, but their
success depends strongly on training population size, genomic
architecture, and model design. Hybrid and ensemble approaches
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consistently provide the most stable improvements, combining the
interpretability of linear models with the flexibility of nonlinear learning.

The primary contribution of MultiGS lies in enabling breeders and
researchers to explore these trade-offs systematically within a unified
framework. By integrating R- and Python-based models, supporting
multiple marker types, and providing standardized evaluation pipelines,
MultiGS facilitates informed model selection rather than relying on a
single methodology. This design aligns closely with actual breeding
workflows, where adaptability, robustness, and computational
practicalities are as important as peak PA.

Marker type also emerged as a critical and often underappreciated
factor influencing prediction accuracy. Across both maize and flax
datasets, haplotype-based markers consistently matched or exceeded SNP-
based predictions and outperformed PC-based predictions in across-
population settings (Figure 3). These results indicate that preserving local
LD and multi-allelic information can improve robustness and accuracy,
particularly when training populations are limited or genetically
divergent. Consequently, effective genomic selection requires joint
consideration of marker representation, model architecture, and training
population characteristics rather than optimization of predictive models
alone.

Limitations and Future Directions

Several limitations of this study should be acknowledged. First,
benchmarking in the wheat2000 and maize6000 datasets relied on random
within-population training-test splits, which approximate cross-
validation and may overestimate prediction performance relative to
actual breeding deployment, particularly for DL models. The flax287
dataset provided a true across-population prediction scenario, but its
small training population limited the evaluation of high-capacity DL
architectures.

Second, most phenotypic data used in the present benchmarks were
derived from single or limited environments and thus do not explicitly
capture genotype-by-environment (G x E) interactions, which are
pervasive in real-world breeding programs. G x E can substantially reduce
prediction accuracy when models trained in one environment are applied
to others, and its effects may differ between traditional GS models and
more flexible DL architectures that can implicitly model complex and
nonlinear responses.

Future studies using larger and more diverse populations, combined
with systematic across-population and across-environment validations,
are warranted to better define conditions under which DL models provide
consistent advantages. The MultiGS framework is readily extensible to
multi-environment genomic selection through the integration of
environmental covariates, reaction-norm formulations, or multi-
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environment mixed models, enabling joint modeling of genetic main
effects and G x E interactions.

In addition, the current MultiGS implementation focuses on single-trait
prediction, whereas many breeding programs target correlated traits
evaluated across multiple environments; extending the framework to
multi-trait and multi-environment models should be incorporated in
future iterations. Finally, although graph-based and hybrid DL models
showed increased robustness in some settings, their performance
remained sensitive to marker type and population structure, highlighting
the need for improved hyperparameter optimization, automation, and
resource management to support stable and scalable deployment in
practical breeding pipelines. Future development will also support matrix-
based, scored marker inputs beyond VCF, enabling direct use of breeder-
curated genotype tables and alternative marker systems that are not
readily convertible to VCF.

CONCLUSIONS

MultiGS was developed to support both methodological researchers
and applied breeding programs by enabling transparent benchmarking as
well as routine genomic prediction within a unified framework. By
integrating traditional statistical models, ML methods, and modern DL
architectures into a standardized workflow, MultiGS provides a practical
platform for evaluating and deploying genomic selection across diverse
crops and prediction scenarios.

Across wheat2000, maize6000, and flax287 datasets, the results showed
that classical linear models such as RR-BLUP remain strong and reliable
baselines, while selected DL, hybrid, and ensemble models implemented
in MultiGS achieve comparable or superior PA under appropriate
conditions. The flax across-population case study demonstrated that
prediction robustness, rather than peak accuracy under idealized
validation, remains the primary challenge for actual breeding applications.
In this context, graph-based and BLUP-integrated hybrid models exhibited
more stable generalization than many high-capacity DL architectures.

In addition, MultiGS DL and hybrid models delivered competitive
accuracies with lower computational cost than previously published DL
tools, supporting their suitability for routine use in breeding programs. In
general, no single model is universally optimal across traits or populations.
MultiGS addresses this challenge by providing a flexible, efficient, and
extensible platform that enables breeders and researchers to make
informed, scenario-specific decisions when applying genomic selection in
practice.
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SUPPLEMENTARY MATERIALS

The following supplementary materials are available online: Figure S1.
Architectures of two fully connected network and four graph-based deep
learning models for genomic selection: (A) DNNGS, (B) MLPGS, (C)
GraphConvGS, (D) GraphAttnGS, (E) GraphSAGEGS, and (F) GraphFormer;
Figure S2. Architectures of three hybrid genomic selection models that
integrate linear and deep learning components. (A) DeepResBLUP, (B)
DeepBLUP and (C) EnsembleGS; Figure S3. Multidimensional scaling (MDS)
analysis based on the genomic relationship matrix (GRM) for 278 training
lines (flax287) and 260 test lines from three biparental populations,
showing pronounced genetic structure between the two sets; Table S1.
Linear and machine learning models implemented in MultiGS-R; Table S2.
Summary of eight linear and machine learning models implemented in
MultiGS-P; Table S3. Default hyperparameter settings for the machine
learning and deep learning models implemented in MultiGS-P; Table S4.
Genetic diversity and population differentiation between training and test
sets across three datasets; Table S5. Prediction accuracies of five traits
across models implemented in MultiGS-P, evaluated using a wheat
training set of 1,600 accessions and a testing set of 400 randomly selected
accessions genotyped with a randomly selected set of 10,000 SNP markers;
Table S6. Prediction accuracies of three traits across models implemented
in MultiGS-P, evaluated using a maize training set of 4,664 lines and a
testing set of 1,167 randomly selected lines, and genotyped with 10,000
randomly selected single nucleotide polymorphism (SNP), 5,439 haplotype
(HAP) or 313 principal component (PC) markers; Table S7. Prediction
accuracies of three traits across models implemented in MultiGS,
evaluated using a flax training set of 278 accessions from a core collection
and a testing set of 260 biparental inbred lines, with 7,363 haplotype

markers derived from 33,895 common SNPs.
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