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ABSTRACT 

Genomic selection (GS) is a core strategy in modern breeding programs, 
yet the rapid expansion of statistical, machine learning (ML), and deep 
learning (DL) models has made systematic evaluation and practical 
deployment increasingly challenging. To address these issues, we 
developed MultiGS, a unified and user-friendly framework that integrates 
linear, ML, DL, hybrid, and ensemble GS models within a standardized and 
computationally efficient workflow. MultiGS is implemented through two 
complementary pipelines: MultiGS-R, a Java/R pipeline implementing 12 
statistical and ML models, and MultiGS-P, a Python pipeline integrating 17 
models including five linear models, three ML approaches, and nine 
recently developed DL architectures. We benchmarked MultiGS using 
wheat, maize, and flax datasets representing contrasting prediction 
scenarios. Wheat and maize were evaluated using random training–test 
splits within the same population, reflecting suitable conditions for 
assessing model capacity and scalability. Under these scenarios, several 
DL, hybrid, and ensemble models achieved prediction accuracies 
comparable to or exceeding those of RR-BLUP and GBLUP. In contrast, the 
flax dataset represented a true across-population prediction scenario with 
limited training set size and strong population structure. In this 
challenging context, classical linear models provided stable baselines, 
while a subset of DL architectures, particularly graph-based models and 
BLUP-integrated hybrids, demonstrated comparatively improved 
generalization across populations. Comparisons with previously 
published DL tools showed that models implemented in MultiGS achieved 
comparable or improved prediction accuracies while requiring lower 
computational cost, enabling routine retraining and large-scale evaluation. 
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Collectively, MultiGS supports scenario-specific model selection and 
provides a practical platform for deploying genomic prediction under 
realistic breeding conditions. The software is freely available on GitHub 
(https://github.com/AAFC-ORDC-Crop-Bioinformatics/MultiGS). 

KEYWORDS: genomic selection; haplotype; principal component; 
prediction accuracy; cross-validation; across-population prediction; 
machine learning; deep learning; breeding 

ABBREVIATIONS 

APP, across-population prediction; BL, Bayesian LASSO; BLUP, best linear 
unbiased prediction; BN, batch normalization; BRR, Bayesian ridge 
regression; CNN, convolutional neural network; Conv, convolution (layer); 
CV, cross-validation; DL, deep learning; FC, fully connected (layer); FFN, 
feed-forward network; GBLUP, Genomic BLUP; GCN, graph convolutional 
network; GAT, graph attention network; GEBV, genomic estimated 
breeding value; GELU, Gaussian Error Linear Unit; GNN, graph neural 
networks; GS, genomic selection; HAP, haplotype; LD, linkage 
disequilibrium; KNN, k-nearest neighbors; MHA, multi-head attention; ML, 
machine learning; MLP, multilayer perceptron; OOF, out-of-fold; PC, 
principal component; PCA, principal component analysis; ReLU, rectified 
linear unit; RFR, Random Forest Regression; RR-BLUP, Ridge Regression 
Best Linear Unbiased Prediction; RKHS, Reproducing Kernel Hilbert Space; 
SAGE, sample and aggregate (GraphSAGE); SNP, single nucleotide 
polymorphism; VCF, variant call file; TKW, thousand-kernel weight; GW, 
grain width; GH, grain hardness; GP, grain protein; GL, grain length; DTT, 
days to tassel; PH, plant height; EW, ear weight; DTM, days to maturity; 
OIL, oil content 

INTRODUCTION 

Genomic selection (GS) has become a core strategy in modern plant and 
animal breeding, enabling the prediction of breeding values using 
genome-wide markers and accelerating genetic gain through reduced 
cycle time [1,2]. Since its introduction, a wide range of statistical, machine 
learning (ML), and deep learning (DL) models have been developed to 
improve prediction accuracy (PA), typically measured as the Pearson 
correlation coefficient between predicted and observed phenotypes. 
Traditional linear models such as Ridge Regression BLUP (RR-BLUP) and 
Genomic BLUP (GBLUP) remain widely adopted due to their simplicity, 
computational efficiency, and strong baseline performance [3,4], while 
Bayesian approaches, including Bayesian Ridge Regression (BRR), 
Bayesian LASSO (BL), and BayesA/B/C, provide additional flexibility in 
modeling heterogeneous marker-effect distributions [5,6]. 

ML approaches such as random forest, support vector machines, 
gradient boosting, and regularized regression have expanded the 

https://github.com/AAFC-ORDC-Crop-Bioinformatics/MultiGS
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analytical landscape of GS by capturing nonlinear relationships and 
higher-order interactions among markers [7,8]. More recently, DL 
architectures, including multilayer perceptrons (MLP), convolutional 
neural networks (CNN), recurrent networks, attention-based models, 
transformers, and graph neural networks (GNNs), have shown promise for 
capturing nonlinear effects, epistasis, and structural dependencies among 
markers [9–12]. This has led to the development of numerous DL-based GS 
methods, such as DeepGS [9], G2PDeep [13], DeepGP [14], DNNGP [15], 
GPformer [16], Cropformer [17], GEFormer [18], iADEP [19], WheatGP [20], 
SoyDNGP [21] and DPCformer [22], each exploring different architectural 
designs and reporting improvements relative to traditional models under 
specific datasets or validation schemes. 

Despite this rapid methodological progress, several limitations 
continue to hinder the broad adoption of DL-based GS methods in practical 
breeding pipelines. Many existing tools provide only partial or research-
oriented implementations, with fragmented codebases, inconsistencies 
between published descriptions and actual source code, limited 
documentation, or incomplete end-to-end workflows. As a result, 
reproducibility and usability are often compromised, making integration 
into routine breeding workflows difficult. Moreover, many DL tools 
require substantial expertise in Python, PyTorch [23], graphics processing 
unit (GPU) computing, or Unix/Linux environments—skills that are 
uncommon among breeders and applied geneticists. Consequently, 
although DL models show promise, their accessibility to breeding 
programs remains limited. 

A second challenge arises from inconsistent benchmarking practices 
across studies. Reported improvements over RR-BLUP, GBLUP, or other 
baselines often depend on differences in software implementations, 
preprocessing procedures, hyperparameter choices, or validation 
strategies. Based on our experience implementing both R- and Python-
based versions of standard GS models, even nominally identical methods 
can yield substantially different prediction accuracies depending on 
software environments and analytical settings. These inconsistencies 
make it difficult to determine whether a DL model consistently 
outperforms existing approaches or simply performs well under a specific 
configuration. The field therefore lacks a unified, reproducible 
benchmarking framework that supports diverse model families under 
standardized evaluation procedures. 

To address these limitations, we developed MultiGS, a pair of 
complementary, user-friendly genomic prediction platforms that: (1) 
integrate a broad spectrum of GS models, ranging from classical linear 
mixed models to advanced ML, DL, hybrid and ensemble architectures; (2) 
provide standardized workflows for data preprocessing, cross-validation 
(CV), across-population prediction (APP), and post-analysis; and (3) 
support multiple marker types, including single nucleotide 
polymorphisms (SNP), haplotypes (HAP), and principal components (PC). 



 
Crop Breeding, Genetics and Genomics 4 of 26 

Crop Breed Genet Genom. 2026;8(1):e260004. https://doi.org/10.20900/cbgg20260004 

In this study, we describe the design and implementation of the MultiGS 
framework and evaluate its performance across multiple datasets 
representing distinct breeding scenarios. Our results show that the DL 
models implemented within the MultiGS framework can achieve 
prediction accuracies (PAs) comparable to RR-BLUP and, in some settings, 
exceed those of GBLUP, consistent with recent evidence that DL 
approaches can be competitive with traditional GS models under 
appropriate conditions. By integrating DL models alongside established 
linear and ML approaches within a unified and reproducible framework, 
MultiGS emphasizes scenario-specific model selection rather than 
advocating a single optimal method. Collectively, MultiGS bridges 
methodological innovation and practical usability, offering an integrated 
platform to support genomic selection research and facilitating 
deployment in real-world breeding programs. 

MATERIALS AND METHODS 

Overview of the MultiGS Framework 

The MultiGS framework was developed to provide an integrated and 
reproducible platform for GS as the field expands from traditional mixed 
models towards increasingly diverse ML and DL approaches. In particular, 
MultiGS places strong emphasis on the systematic evaluation of nine DL 
architectures that capture nonlinear, local, and graph-structured 
genotype–phenotype relationships beyond the assumptions of classical 
linear methods. Existing GS pipelines often require users to navigate 
multiple software tools with inconsistent workflows and incompatible 
preprocessing procedures, making fair comparison and practical 
deployment of DL models especially challenging. MultiGS resolves these 
limitations by offering a unified ecosystem that standardizes data 
handling, model execution, cross-validation, and result summarization 
across statistical, ML, and DL models. The framework supports three 
marker types derived from SNP genotypes: SNP, HAP, and PC, and adopts 
a consistent input–output structure across all implemented algorithms, 
enabling direct benchmarking of classical models against advanced DL 
architectures. 

MultiGS is organized into two complementary pipelines. MultiGS-R 
provides access to classical GS and Bayesian methods implemented in R 
serving as robust baselines widely used in breeding programs. MultiGS-P 
substantially extends the analytical scope by implementing advanced ML 
methods and nine DL models, including fully connected networks, 
convolution–attention hybrids, graph neural networks, and BLUP-
integrated hybrid architectures. These DL models were designed to 
explicitly target key challenges in GS, such as nonlinear marker effects, 
local linkage disequilibrium (LD) patterns, and population structure, 
within a common and reproducible framework. 
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Both pipelines share the same design logic, allowing users to evaluate 
linear, ML, and DL models under identical preprocessing steps, training 
configurations, and accuracy metrics. Detailed descriptions of the R and 
Python pipelines are shown in Figure 1. To ensure user-friendliness, 
MultiGS employs a standardized input–output format controlled by a 
configuration file. Users can flexibly select any combination of models, 
marker types, and evaluation modes (model benchmarking or prediction) 
simply by modifying configuration flags, without altering their data 
preparation workflow. This design enables breeders and researchers to 
focus on biological interpretation and breeding decisions while facilitating 
rigorous assessment of advanced DL models alongside established GS 
approaches. 

 
Figure 1. Schematic overview of the genomic prediction platform used to predict the genomic estimated 
breeding values (GEBVs) of new breeding lines with MultiGS-R and MultiGS-P. The reference test lines with 
phenotypic data and the dotted box containing phenotypic data from the test population are optional and 
used only for model evaluation and model selection when available. 
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MultiGS-R 

MultiGS-R is the R-based pipeline for statistical and ML models. It 
integrates twelve widely used GS models through the rrBLUP [4], BGLR [6], 
e1071 [24], and randomForest [25] packages. These include linear mixed 
models such as RR-BLUP and GBLUP, Bayesian regression models 
including BRR, BL, and BayesA/B/C, random forest algorithms, SVM, and 
RKHS methods (Table S1). MultiGS-R automates the core steps of GS 
analysis—genotype and phenotype preprocessing, model training, 
prediction, and accuracy assessment while maintaining consistent output 
formats across models. This pipeline provides a stable and accessible 
environment for breeders and researchers who require reliable and 
interpretable models without the need for extensive scripting. 

MultiGS-P 

MultiGS-P implements an extensive suite of ML and DL models using 
Python, scikit-learn [26], and PyTorch [23]. The pipeline includes linear 
and regularized models (RRBLUP-equivalent Ridge, ElasticNet, and BRR), 
tree-based learners (Random Forest Regression), and gradient boosting 
methods (XGBoost and LightGBM) (Table S2). In addition to these 
conventional ML approaches, MultiGS-P implements nine recently 
developed DL architectures, ranging from fully connected networks and 
convolution–attention hybrids to multiple graph neural network variants 
(Table 1). The pipeline further integrates hybrid methods that combine RR-
BLUP with deep networks (DeepResBLUP and DeepBLUP), as well as a 
stacking-based ensemble learner (EnsembleGS) capable of fusing 
predictions from arbitrary base models (Table 1). Together, this collection 
provides a comprehensive modeling environment in which additive, 
nonlinear, LD-aware, graph-structured, and hybrid genotype–phenotype 
relationships can be evaluated within a unified and reproducible 
workflow. 

All DL models were systematically tuned during development to ensure 
stable training and competitive performance across datasets. The default 
hyperparameters for all models implemented in MultiGS-P are provided 
in the template configuration files and are summarized in Table S3. 

The DL architectures are grouped into fully connected, graph-based, 
hybrid, and BLUP-integrated categories. Each architecture is described in 
the Supplementary Methods with documentation of its design rationale 
and intended uses (Figures S1 and S2). All ML and DL models in MultiGS-P 
are fully configurable through a centralized configuration file (Table S3), 
allowing users to adjust hyperparameters, model depth, learning 
schedules, and regularization settings without modifying source code. This 
design facilitates systematic benchmarking and fair comparison across 
diverse model classes while supporting flexible adaptation to a range of 
datasets and breeding scenarios. 
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Table 1. Summary of nine deep learning model architectures implemented in MultiGS-P. 

Model Architecture Type Main Components Key Properties 

DNNGS Fully connected deep 
neural network 

Input dropout; 4 fully connected blocks (512–256–
128–64) with ReLU and dropout; optional batch 
normalization; final linear prediction head 

Efficient nonlinear modeling of 
genotype features; simple and fast 
baseline DL model 

MLPGS MLP with 
normalization and 
residual connections 

Input dropout; 2 dense blocks (128-64) with 
GELU/ReLU, dropout, layer normalization; optional 
residual skip connections; output normalization + 
final dense layer 

Stabilized deep MLP with improved 
training dynamics and gradient flow 

GraphConvGS Graph Convolutional 
Network (GCN) 

KNN graph construction; 2×GCNConv + layer norm + 
ReLU + dropout; node-wise MLP 

Models sample-to-sample similarity; 
effective for population-structured GS 
data 

GraphAttnGS Graph Attention 
Network (GAT) 

KNN graph; 2×GATConv (multi-head attention) + 
layer norm + dropout; node MLP 

Learns adaptive attention weights over 
neighbors; flexible modeling of 
heterogeneous relationships 

GraphSAGEGS GraphSAGE 
neighborhood 
aggregator 

KNN graph; 2×SAGEConv + layer norm + dropout; 
node MLP 

Inductive, scalable, and robust across 
populations; robust performance on 
large datasets 

GraphFormer GraphSAGE + 
Transformer hybrid 

2×SAGEConv → node embeddings → Transformer 
encoder → MLP 

Captures both local graph structure 
and global node interactions for 
enhanced representation learning 

DeepResBLUP Residual hybrid 
(RRBLUP + DL) 

Fit RRBLUP baseline; DL model fits residual signal; 
weighted combination of linear and nonlinear 
predictions 

Effective additive baseline with 
nonlinear correction; interpretable and 
stable 

DeepBLUP Integrated BLUP-in-DL 
architecture 

RRBLUP-like linear layer → 3 dense blocks (256–
128–64) with GELU, batch norm, dropout, and 
residual connections; optional skip link from 
RRBLUP output 

Deep refinement of BLUP with modern 
DL structure; robust performance for 
additive + mild nonlinear effects 

EnsembleGS Stacked ensemble Trains multiple base models; collects OOF 
predictions; meta-learner (linear regression) for 
final prediction 

Most robust across datasets; leverages 
complementary strengths of diverse 
model families 

Hyperparameter Tuning of Deep-Learning Models 

All DL models were tuned during development using the flax training 
dataset, which represents a challenging scenario characterized by a small 
training population and strong population structure. This setting more 
closely reflects realistic breeding conditions than within-population 
validation and therefore provides a conservative basis for model 
configuration. Hyperparameters identified under this conservative setting 
were subsequently applied uniformly to all datasets, including wheat2000, 
maize6000, and flax287. No dataset- or trait-specific tuning was 
performed, ensuring fair and consistent comparison among model classes.  

Although these hyperparameters are not necessarily optimal for every 
species or dataset, this strategy was adopted to avoid dataset-specific 
manual tuning that could introduce bias and compromise comparability 
across models. Moreover, this approach reflects a realistic usage scenario 
in breeding programs, where extensive hyperparameter optimization is 
often impractical due to limited computational resources or technical 
expertise. 

Hyperparameter tuning was conducted using a grid search strategy, 
and the resulting default settings are provided in the template 
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configuration files and summarized in Table S3. For users who wish to 
further optimize model performance for specific datasets, a utility script 
(hyperparameter_optimizer.py) is provided to facilitate targeted tuning of 
key model parameters. 

Marker Types 

MultiGS supports three genomic feature representations, SNP, HAP, 
and PC, allowing users to evaluate model performance across alternative 
marker types. Here, “SNP” is used as a representative marker category and 
encompasses any biallelic or numerically encoded molecular markers 
compatible with matrix-based genomic prediction models, including 
genotyping-by-sequencing (GBS), diversity arrays technology (DArT), 
simple sequence repeat (SSR), and amplified fragment length 
polymorphism (AFLP) markers. These marker types capture 
complementary aspects of genomic variation and provide flexibility for 
modeling different genetic architectures. 

The SNP marker type uses the raw genotype matrix, encoding markers 
as additive allele counts. Although referred to here as SNP-based, this 
representation can accommodate any bi-allelic or multi-allelic markers 
derived from different genotyping technologies, provided they are 
numerically encoded. This marker type is the most widely used in genomic 
selection and serves as the baseline input for most models. 

The HAP marker type aggregates adjacent SNPs into haplotype blocks, 
enabling models to capture local linkage-phase information and multi-
allelic patterns that may correlate more strongly with causal loci. 
Haplotype markers are particularly useful in regions with strong LD or 
when phased or block-based genotype data are available. Both pipelines 
used additive dosage coding with values 0, 1, and 2: code 0 (0/0) for 
homozygous reference alleles, code 1 (0/1, 0/2, …) for heterozygous 
genotypes with one alternative allele, and code 2 (1/1, 2/2, …) for 
homozygous alternative alleles. Missing data (./.) are assigned code –1 and 
are imputed using the mean algorithm or Beagle software [27]. Haplotype 
blocks were estimated with the rtm-gwas-snpldb tool in RTM-GWAS 
v2020.0 [28], which applies the Haploview “Gabriel” confidence-interval 
algorithm [29,30]. This algorithm identifies haplotype blocks based on 
statistically supported LD confidence intervals and has been widely 
adopted for defining robust LD blocks. Pairwise LD was measured using D’ 
with 95% confidence intervals, and haplotype blocks were defined when 
≥95% of informative pairs were in strong LD (CI(D’) lower ≥ 0.70, upper ≥ 
0.98). 

The PC marker type summarizes genome-wide marker information 
using PCs derived from SNP data. PCs capture major population structure 
and relatedness patterns while reducing dimensionality. This 
representation provides a compact genomic representation and may 
improve stability or computational efficiency in certain models. The first 
N PCs explaining 95% (configurable) of the total variance are retained for 



 
Crop Breeding, Genetics and Genomics 9 of 26 

Crop Breed Genet Genom. 2026;8(1):e260004. https://doi.org/10.20900/cbgg20260004 

prediction. The number of retained PCs varied across datasets but 
typically ranged between ~20 and 200. 

All three marker types are constructed automatically within both 
MultiGS pipelines, ensuring consistent preprocessing and compatibility 
across model families.  

Model Evaluation 

MultiGS provides standardized evaluation procedures to ensure 
reliable comparison of models, marker types, and data partitions. Both 
pipelines implement CV schemes commonly used in genomic prediction 
studies, including random k-fold CV for assessing general predictive 
performance within populations. In addition, structured CV options are 
supported for breeding programs involving multiple families or 
subpopulations. CV routines are fully automated, with users specifying 
fold number and seed settings to maintain reproducibility. Beyond within-
population evaluation, MultiGS explicitly supports across-population 
prediction (APP), a realistic breeding scenario in which training and target 
populations differ genetically. In APP mode, models are trained using a 
designated reference population and evaluated on an independent target 
population without phenotypic information during training. 

Prediction accuracy (PA) was consistently quantified as Pearson’s 
correlation coefficient between predicted and observed values. This 
metric was used uniformly across all models, marker types, and datasets 
to enable direct comparison. MultiGS also generates prediction summaries 
and visualization files to facilitate rapid comparison of model 
performance. All result formats are identical across the R and Python 
pipelines, enabling seamless benchmarking of statistical, ML, and DL 
approaches. 

Case Studies 

To evaluate the performance of the models implemented in the MultiGS 
pipelines, three genomic and phenotypic datasets, wheat, maize, and flax, 
were analyzed. These datasets were selected to represent contrasting 
breeding and prediction scenarios, ranging from within-population 
evaluation to true across-population prediction.  

The wheat dataset consisted of 2403 Iranian bread wheat (Triticum 
aestivum) landrace accessions conserved in the CIMMYT Wheat Gene Bank 
(https://hdl.handle.net/11529/10548918) [31]. Genotyping was performed 
using 33,709 DArTseq presence/absence markers, coded as 1 (allele 
present) or 0 (allele absent). Five traits, thousand-kernel weight (TKW), 
grain width (GW), grain hardness (GH), grain protein (GP), and grain 
length (GL), were evaluated. After removing accessions with missing 
phenotypes, the remaining 2000 accessions were randomly divided into a 
training population of 1,600 and a testing population of 400 (80:20 ratio). 
After filtering using minor allele frequency ≥ 5%; call rate ≥ 80%, the 

https://hdl.handle.net/11529/10548918
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retained 9927 markers were converted to VCF format for genomic 
prediction analyses. This dataset is hereafter referred to as wheat2000. 

The maize dataset was derived from the CUBIC hybrid population [32]. 
In total, 6210 F₁ hybrids (207 female × 30 male) were evaluated across five 
environments in China during the 2015 growing season. Three agronomic 
traits, days to tassel (DTT), plant height (PH), and ear weight (EW), were 
measured, and best linear unbiased predictions (BLUPs) were calculated 
across environments. Genomic data consisted of 10,000 SNPs randomly 
sampled from ~4.5 million imputed markers available through the 
ZEAMAP repository 
(https://ftp2.cngb.org/pub/CNSA/data3/CNP0001565/zeamap/99_MaizegoR
esources/01_CUBIC_related/). After removing hybrids missing genotypic or 
phenotypic records, the dataset comprised 5831 maize hybrids. These 
hybrids were randomly partitioned into a training population of 4,664 
hybrids (80%) and a testing population of 1167 hybrids (20%). This dataset 
is hereafter referred to as maize6000. 

To evaluate across-population prediction performance, a flax dataset 
comprising 278 linseed accessions genotyped by whole-genome 
sequencing was used as the training population (flax287) [33–35]. 
Approximately 1.7 million SNPs were available for model training. The test 
population consisted of 260 inbred lines derived from multiple biparental 
populations [33], representing a realistic breeding scenario in which 
prediction targets differ substantially from the training population. These 
test lines were re-genotyped by mapping short paired-end reads to the 
latest flax reference genome, CDC Bethune v3.0 (NCBI accession 
JAZBJT000000000; You et al., in preparation), yielding 43,179 SNPs, of 
which 33,895 were shared with the training populations and used for 
genomic prediction. Three key agronomic traits, days to maturity (DTM), 
oil content (OIL), and PH, were evaluated. 

Genetic diversity and population differentiation between training and 
test sets across the three datasets are summarized in Table S4. Wheat2000 
and Maize6000 exhibited negligible genetic differentiation between 
training and test populations (FST ≈ 0), consistent with random within-
population sampling. However, flax287 exhibited strong population 
divergence (FST = 0.27), reflecting a true across-population prediction 
scenario. Expected heterozygosity (He) was high in maize6000 (~0.38) but 
markedly lower in wheat2000 and flax287 (~0.01–0.02), highlighting 
substantial differences in genetic diversity among datasets.   

To benchmark the performance of the MultiGS framework against 
existing DL–based GS approaches, we selected four publicly available GS 
tools representing diverse neural-network architectures: DeepGS 
(convolutional neural networks) [9], CropFormer (CNN integrated with 
self-attention) [17], WheatGP (CNN-LSTM–based feature extractors) [20], 
and DPCFormer [22]. Because these tools differ in their required input 
formats, preprocessing workflows, and output interfaces, direct 
comparison is not straightforward. To ensure consistent evaluation across 

https://ftp2.cngb.org/pub/CNSA/data3/CNP0001565/zeamap/99_MaizegoResources/01_CUBIC_related/
https://ftp2.cngb.org/pub/CNSA/data3/CNP0001565/zeamap/99_MaizegoResources/01_CUBIC_related/
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models, we developed customized wrapper programs for each tool. These 
wrappers harmonized SNP marker data and phenotypic inputs, including: 
(i) aligning samples between genotype and phenotype files, (ii) identifying 
common markers between training and testing sets, (iii) converting VCF, 
comma separated value (CSV), or matrix formats into tool-specific input 
structures, and (iv) standardizing prediction outputs for downstream 
comparisons. All tools were run using identical training/test splits and the 
same set of single-trait prediction tasks. This unified preprocessing and 
execution framework ensures a fair, reproducible comparison between 
MultiGS models and previously published GS methods regardless of their 
heterogeneous interfaces.  

To ensure fair comparison with previously published DL tools that 
require fixed input dimensions, dataset-specific adaptations were applied 
where necessary. For WheatGP, the original implementation hard-coded 
the Long Short-Term Memory (LSTM) input size as lstm_dim = 10,080, 
corresponding to the reference dataset used in the original study. However, 
the effective dimensionality of the LSTM layer depends on the number of 
markers provided as input. To enable application across datasets with 
varying SNP counts, we modified the implementation by replacing the 
fixed input size with a dynamic formulation, 𝑙𝑠𝑡𝑚_ dim =  ∑ 8(𝑔𝑖 − 4)5

𝑖=1 , 
where 𝑔𝑖  denotes the number of SNP markers in the i-th group (five 
groups in total, as defined in WheatGP). This modification allows the LSTM 
input dimension to scale automatically with the number of available 
markers, enabling consistent application across datasets without altering 
model structure. 

For CropFormer, the number of input markers is fixed at 10,000 by 
design. To satisfy this constraint, random SNP subsetting or zero-padding 
was applied as appropriate. Specifically, when datasets contained more 
than 10,000 markers, a random subset of 10,000 SNPs was sampled; when 
fewer markers were available, padding was used to reach the required 
input size. The same procedure was applied consistently across the 
wheat2000, maize6000, and flax287 datasets. Random sampling was 
performed using fixed random seeds to ensure reproducibility. 

RESULTS 

Prediction Accuracy (PA) Across Models in the Wheat2000 Dataset 

Using the wheat2000 dataset (1600 training and 400 independent test 
lines), we evaluated all models implemented in MultiGS-P and MultiGS-R 
and compared their performance with several published DL methods 
(Figure 2; Table S5). Linear mixed-model baselines (RR-BLUP, GBLUP, BRR) 
provided consistent reference performance across pipelines, with SNP-
based PAs ranging from ~0.53 to 0.76 depending on trait. Nearly identical 
results across implementations confirmed reproducibility, while BGLR-
based GBLUP slightly outperformed rrBLUP-based implementations, 
consistent with known differences in variance component estimation. 
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Several ML models achieved prediction accuracies comparable to or 
exceeding those of linear baselines. In particular, tree-based approaches 
such as Random Forest, XGBoost, and LightGBM frequently ranked among 
the strongest performers, achieving PAs of ~0.72–0.74 for GL and GW, 
comparable to or slightly exceeding RR-BLUP. ElasticNet showed stable but 
generally weaker performance and did not consistently outperform linear 
models. 

DL models demonstrated competitive but trait-dependent 
performance. For high-heritability traits (GL, GW, TKW; h2 ≈ 0.83–0.88 
[31]), most DL architectures achieved PAs comparable to those of top ML 
models and RR-BLUP (typically ~0.70–0.74). Among these, GraphSAGEGS 
and GraphFormer consistently outperformed other graph-based models, 
while DNNGS showed stable performance across traits. For lower-
heritability traits (GH, GP), DL models slightly underperformed linear 
baselines but still achieved reasonable accuracies (~0.45–0.60). 

Hybrid approaches integrating RR-BLUP with DL models ranked among 
the strongest DL-based models. DeepResBLUP matched or slightly 
exceeded RR-BLUP for GL, GW, and TKW, while DeepBLUP showed 
similarly robust performance. The stacking-based ensemble model, 
EnsembleGS, achieved consistently high accuracy across all traits (up to 
~0.74), highlighting the benefit of combining complementary predictors. 

Compared to published DL tools (DeepGS, CropFormer, WheatGP), the 
top MultiGS models achieved comparable or higher PAs across all traits. 
EnsembleGS, DeepResBLUP, and GraphSAGEGS consistently matched or 
outperformed DeepGS, while CropFormer and WheatGP showed more 
variable performance, particularly for GP. 

Prediction Accuracy (PA) Across Models in the Maize6000 Dataset 

Using the maize6000 dataset (4,664 training and 1,167 test lines), we 
evaluated 17 MultiGS-P and 12 MultiGS-R models using SNP-, HAP-, and PC-
based markers across three traits (DTT, EW, PH) (Figure 2; Table S6). 
Linear baseline models again performed strongly, particularly for DTT 
and PH, with SNP- and HAP-based PAs consistently exceeding 0.92. For EW, 
prediction accuracies were lower (~0.76–0.77) but remained among the 
strongest results across model classes. 

Tree-based ML models performed particularly well. XGBoost and 
LightGBM achieved accuracies up to ~0.94 for DTT and ~0.93 for PH, 
matching or slightly exceeding RR-BLUP, and ~0.78–0.79 for EW. In 
contrast, classification-oriented models (SVC, RFC) consistently 
underperformed for these continuous traits and were therefore less 
competitive. 
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Figure 2. Prediction accuracies (PAs) across 17 models implemented in MultiGS-P, 12 models implemented 
in MultiGS-R (indicated by “(R)”), and several previously published deep learning models for three datasets. 
Standard errors of PA are indicated on each bar. Models are categorized into Linear (blue), machine learning 
(orange), deep learning (green), and hybrid (purple). RR-BLUP and GBLUP are highlighted in bold as baseline 
models. Baseline models are shown in bold. 

DL models achieved accuracies comparable to linear baselines for DTT 
and PH, typically in the range of 0.91–0.93. GraphSAGEGS, GraphFormer, 
DeepResBLUP, and DeepBLUP consistently ranked among the strongest DL 
models. For EW, DL model performance was more variable; however, 
hybrid models (DeepResBLUP, DeepBLUP) matched RR-BLUP performance 
(~0.76–0.77), and GraphSAGEGS and EnsembleGS also performed 
competitively. 

Relative to published DL tools (DeepGS, CropFormer, DPCFormer, 
WheatGP), the best MultiGS models achieved comparable or improved 
accuracies across all traits. EnsembleGS, DeepResBLUP, DeepBLUP, and 
GraphFormer matched or slightly exceeded DeepGS and CropFormer for 
DTT and PH, while DeepBLUP and DeepResBLUP performed comparably 
to the strongest previously published models for EW. Overall, MultiGS 
achieved competitive DL performance while supporting a broader and 
more flexible modeling environment. 

Prediction Accuracy (PA) of Models for Across-Population Prediction 
in the Flax287 Dataset 

The flax287 dataset represents a substantially more challenging 
scenario, combining a small training population (278 accessions) with 
prediction in genetically narrow biparental populations (260 lines) 
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exhibiting strong population structure and genetic differentiation 
between training and test lines (Figure S3; Table S4). Across traits (DTM, 
OIL, PH), prediction accuracies were lower and more variable than in 
wheat2000 and maize6000 (Figure 2; Table S7). Haplotype-based models 
consistently outperformed SNP- and PC-based ones, reflecting strong LD 
structure in flax. 

For DTM, all models showed limited predictive ability (HAP-based PAs 
~0.20–0.41). Linear baselines were among the most stable performers 
(~0.33–0.41). ML models did not improve upon these results, and DL 
models showed high variability, with some architectures achieving 
baseline-level accuracy while others performed poorly or negatively. 
Previously published DL models exhibited similarly weak performance. 

Conversely, the PAs for OIL were higher across all model families. 
Linear models achieved PAs of ~0.60–0.66, while several ML and DL 
models exceeded these baselines. DNNGS, GraphSAGEGS, GraphFormer, 
and EnsembleGS achieved accuracies up to ~0.70–0.75, and GraphConvGS 
reached the highest overall PA (~0.90). Hybrid models also performed well 
across marker types. Among previously published DL tools, only 
DPCFormer showed moderate performance, while others transferred 
poorly to this across-population setting. 

For PH, baseline accuracies reached ~0.61, with several DL and hybrid 
models exceeding this level. DNNGS, GraphFormer, and DeepBLUP 
achieved PAs up to ~0.66–0.70, while ElasticNet and LightGBM also 
performed competitively. Previously published DL models again showed 
inconsistent or weak performance. 

In summary, the flax results underscore the strong effects of training 
population size, population structure, and marker representation on 
genomic prediction. Linear models provided stable baselines, while 
selected DL and hybrid models, particularly those incorporating additive 
genetic priors or graph-based models, offered advantages for OIL and PH. 
These findings emphasize that DL benefits are trait- and context-
dependent and support the value of a diverse modeling portfolio within 
the MultiGS framework. 

Effect of Marker Type on Prediction Accuracy (PA) 

Marker types had a consistent and measurable impact on PAs across 
models and datasets implemented in MultiGS with particularly strong 
effects observed in the flax287 across-population prediction scenario 
(Figure 3; Tables S5–S7). Across all 29 models implemented in MultiGS, 
HAP markers consistently matched or outperformed SNP- and PC-based 
markers when haplotypes could be derived. 

In the wheat2000 dataset, where chromosome-level SNP coordinates 
were unavailable and haplotype construction was therefore not feasible, 
PAs based on SNPs and PCs were largely comparable. Across five traits, 
average PA differed only marginally between SNP- and PC-based models 
(mean PA: SNP = 0.597, PC = 0.586), with trait-specific differences typically 
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within 0.01–0.02. These results indicate that both marker types captured 
similar predictive signals in this dataset. 

In comparison, for the maize6000 and flax287 datasets, where HAP 
markers could be constructed, HAP markers consistently outperformed 
both SNP and PC markers. In maize, haplotype-based models achieved the 
highest PAs across all three traits, with an average PA of 0.831 compared 
with 0.800 for PC-based models. Improvements were particularly notable 
for EW (0.719 vs. 0.680) and PH (0.878 vs. 0.842), highlighting the value of 
capturing local linkage disequilibrium (LD) in a genetically diverse hybrid 
population. 

 

Figure 3. Prediction accuracies of three marker types—single nucleotide polymorphisms (SNP), haplotypes 
(HAP), and principal components (PC)—across the 29 models implemented in both MultiGS pipelines in 
different datasets. (A) the wheat2000 dataset, (B) the maize6000 dataset, and (C) the flax287 dataset. 

The effect of marker type was most pronounced in the flax287 dataset, 
which represents a true APP scenario. Across all three traits, HAP markers 
substantially improved prediction accuracies relative to both SNP and PC 
markers. HAP-based models improved PA by 0.12–0.26 compared with 
SNPs and by 0.24–0.28 compared with PCs, depending on trait. SNP-based 
models ranked second, while PC-based predictions consistently showed 
the lowest accuracy and greater variability across models. 

Taken together, these results demonstrate that haplotype markers 
provide a more informative genomic representation than single-marker 
or PC-based encodings when population structure is strong and training 
and target populations differ. By preserving local LD patterns and multi-
allelic information, haplotype-based markers improve both prediction 
accuracy and robustness in across-population genomic prediction, 
particularly in small or structured breeding populations such as flax. 
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Effect of Training Population Size on Prediction Accuracy 

The relationship between PA and training population size was 
evaluated using the maize6000 dataset, which provided training sets 
ranging from 500 to 4500 individuals. Seven representative models were 
assessed, including linear (R_RRBLUP), ML (LightGBM), DL (MLPGS, 
DNNGS, GraphSAGEGS), and hybrid approaches (DeepBLUP, EnsembleGS). 
Across all three traits (DTT, EW, and PH), PA increased consistently with 
training population size, with rapid gains observed between ~500 and 
2500 samples and continued improvement at larger sizes (Figure 4). 

Although deep learning models are often assumed to require large 
datasets, linear models also benefited from increased sample size. 
R_RRBLUP achieved its highest accuracies at the largest training sizes and, 
in several cases, matched or exceeded DL models beyond 4000 samples. 
LightGBM showed strong scalability and frequently performed best for 
traits with pronounced nonlinear components, particularly EW. The 
hybrid model DeepBLUP exhibited stable gains comparable to R_RRBLUP, 
whereas other DL models generally underperformed relative to the linear 
baseline across most training sizes. Overall, these results demonstrate that 
increased training population size leads to continued improvements in 
genomic prediction accuracy across all model classes, regardless of model 
complexity. 

 

Figure 4. Prediction accuracies of three traits in the maize6000 dataset across varying training sample sizes. 
The full dataset contained 5831 samples, from which 4,664 lines (80%) were randomly selected as the 
training population and 1167 lines (20%) as the test set. A random subset of 10,000 SNPs was used as 
markers. From the 4,664 training lines, subsets of different sizes were randomly sampled and used to predict 
the fixed set of 1167 test samples. Panels show results for: (A) days to tassel (DTT); (B) ear weight (EW); and 
(C) plant height (PH). 

Runtime Performance Across Models 

Using the maize6000 dataset, we compared the computational 
efficiency of 17 models implemented in MultiGS-P across linear, ML, DL, 
and hybrid categories under both CPU and GPU environments (Figure 
5A,B). In addition, four previously published DL models were evaluated 
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separately (Figure 5C). Total runtime represents the average training time 
across three traits. 

Under CPU-only conditions, most linear and ML models completed 
training within seconds to a few minutes across marker types, with RR-
BLUP, ElasticNet, RFR, XGBoost, and LightGBM showing consistently short 
runtimes. However, Bayesian linear models (BRR) and R_GBLUP required 
substantially longer runtimes, in some cases exceeding those of several DL 
models, reflecting the computational cost of iterative Bayesian sampling 
and mixed-model variance estimation rather than model complexity per 
se. 

 

Figure 5. Runtime performance of deep learning models compared with linear and machine-learning 
models under CPU and GPU environments on the high-performance computing server. A total of 17 models 
implemented in MultiGS-P and four previously published tools were evaluated using the maize6000 dataset. 
Total time represents the average training time required for model fitting of each trait. All benchmarks were 
conducted across three traits. (A) and (B) Runtime (minutes) for 17 models under CPU and GPU 
environments, respectively. (C) Runtime (minutes) for four previously published deep learning models 
using SNPs. 

DL models implemented in MultiGS-P showed moderate CPU runtimes, 
with fully connected architectures generally faster than graph-based 
models, which incurred additional overhead due to graph construction 
and message passing. Hybrid models exhibited intermediate runtimes and 
remained computationally feasible for routine use.  

GPU acceleration substantially reduced training time for most DL 
models, with reductions ranging from ~40% to more than 90%. However, 
GPU acceleration provided little benefit for classical linear and ML models 
and, in some cases, increased runtime due to data-transfer overhead and 
workflow initialization cost. Among previously published CNN-based DL 
models, CPU runtimes were markedly longer than those of all MultiGS-P 
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models; although GPU acceleration reduced their training time when 
supported, they remained computationally more demanding. While 
absolute runtimes were influenced by system load at the time of 
benchmarking, relative trends across model classes were consistent. These 
results indicate that MultiGS-P achieves practical computational efficiency 
for large-scale genomic prediction while supporting a diverse range of DL 
and hybrid models. 

DISCUSSION 

Genomic Prediction Performance Across Practical Breeding Scenarios 

The primary objective of MultiGS was not to advocate a single superior 
genomic prediction model, but rather to provide a unified, practical, 
decision-support framework for evaluating and deploying multiple GS 
methodologies under realistic breeding scenarios. Across wheat2000 and 
maize6000 datasets, where training and test sets were randomly sampled 
from the same population, DL, hybrid, and ensemble models implemented 
in MultiGS achieved PAs comparable to RR-BLUP and frequently exceeded 
those of GBLUP. These results are consistent with previous reports 
showing that non-linear models can match or marginally improve upon 
linear mixed models when the training population size is sufficiently large 
and population structure is well matched between training and testing sets 
[10,36]. 

From a breeding perspective, however, such within-population 
evaluations reflect an optimistic assessment of prediction performance. 
Because training and test sets are drawn from the same population, these 
evaluations closely resemble cross-validation (Table S4) and do not fully 
capture the challenges of predicting truly new breeding lines in 
deployment. By contrast, the flax287 dataset provides a realistic across-
population prediction case, characterized by a small training population 
and evaluation in genetically narrow biparental populations. This setting 
more closely reflects operational breeding programs, where PA often 
declines sharply due to population divergence, limited training data, and 
changes in LD patterns [5,37]. Under these conditions, linear and BLUP-
integrated hybrid models provide stable and reliable performance, 
whereas the benefits of DL models are more context dependent. 

The training population size analysis further supports these 
observations. Using the maize6000 dataset, prediction accuracies 
increased monotonically with training population size across all model 
classes, with the largest gains occurring between approximately 500 and 
2500 individuals (Figure 4). Notably, linear models such as RR-BLUP 
continued to improve with increasing sample size and often matched or 
exceeded deep learning models even at the largest training sizes, 
highlighting that data availability remains a dominant driver of prediction 
accuracy regardless of model complexity. 
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Model Robustness Under Across-Population Prediction 

Results from the flax287 dataset highlight a clear distinction between 
model capacity and model robustness. Classical linear models, including 
RR-BLUP, BRR, and Bayesian regressions, provided stable and 
interpretable baseline performance across traits, particularly for DTM, 
where prediction accuracy was uniformly low. This stability underscores 
the continued relevance of linear mixed models in GS, especially for traits 
dominated by additive genetic effects and for scenarios with limited 
training data [1,3].  

However, many pure DL architectures exhibited high variability and, 
in some cases, poor or negative predictive performance in flax, reflecting 
well-known limitations of high-capacity models under small sample sizes 
and pronounced training–test distribution shifts. These results caution 
against indiscriminate applications of DL models in breeding programs 
without careful consideration of population structure and data 
availability. 

Notably, a subset of DL and hybrid models had improved robustness 
under this challenging setting. Graph-based models (GraphSAGEGS, 
GraphFormer) and BLUP-integrated hybrids (DeepBLUP, DeepResBLUP) 
benefited from stronger inductive biases toward biologically meaningful 
structure. Graph-based models operate on sample-level genetic 
relationship graphs rather than raw marker effects, making predictions 
less sensitive to population-specific LD patterns and allele-frequency shifts. 
In particular, the inductive neighborhood aggregation in GraphSAGEGS 
facilitates transfer of information to genetically divergent populations. 
Similarly, BLUP-integrated hybrids preserve additive genetic effects by 
anchoring predictions to a linear RR-BLUP component, allowing the deep 
network to model only residual nonlinear signals. Together, these design 
features contribute to enhanced robustness under across-population 
prediction. 

Comparison with Previously Published Deep Learning Models 

Although DL models have been applied to GS since 2018 [10], beginning 
with convolution-based models such as DeepGS [9], subsequent 
developments have expanded to recurrent, attention-based, transformer, 
and graph-based architectures [15,16,19,20,38–40]. Across studies, 
reported prediction accuracies are generally comparable to, but not 
consistently higher than, those obtained with linear baselines such as RR-
BLUP, particularly when training populations are large and marker 
density is high. Despite methodological advances, many published DL-
based GS tools face practical limitations that hinder reproducibility and 
routine adoption, including incomplete documentation, rigid input 
requirements, discrepancies between published descriptions and 
available code, and the lack of standardized workflows for preprocessing 
and evaluation. In addition, computational constraints often necessitate 
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fixed input dimensions, leading to ad hoc SNP subsetting or padding 
[17,20,22].  

In contrast, MultiGS imposes no explicit restrictions on marker number 
and instead emphasizes biologically informed and computationally 
efficient marker types. Haplotype and PC encodings reduce feature 
dimensionality while preserving linkage disequilibrium and population 
structure, improving training efficiency without arbitrary feature 
selection. Graph-based models in MultiGS further reduce complexity by 
operating on sample-level graphs rather than marker-level graphs. 

Across wheat2000, maize6000, and flax287 datasets, DL and hybrid 
models implemented in MultiGS achieved prediction accuracies 
comparable to or exceeding those of previously published DL tools. While 
previously published models performed well under within-population 
validation, their performance declined in the flax across-population 
scenario. Conversely, several MultiGS hybrid models showed greater 
stability across datasets and prediction settings. These results suggest that 
architectural complexity alone is insufficient for robust genomic 
prediction; instead, models that integrate additive genetic effects with DL 
refinement and emphasize generalizability are better suited to realistic 
breeding scenarios. By providing a unified, configurable, and well-
documented framework, MultiGS addresses key limitations of existing DL-
based GS tools and facilitates fair benchmarking and practical deployment. 

Computational Efficiency and Breeding Deployment 

In practical breeding pipelines, computational efficiency is a critical 
but often underappreciated factor. Most DL and hybrid models 
implemented in MultiGS required less computational time than previously 
published DL approaches while delivering comparable predictive 
accuracy. This efficiency enables frequent model retraining as new 
phenotypic data becomes available and facilitates large-scale 
benchmarking across traits, populations, and marker types. 

From an operational perspective, when PA is similar, reduced 
computational burden becomes a decisive advantage. The ability to 
execute MultiGS models under CPU-only environments further lowers 
barriers to adoption, particularly for public breeding programs with 
limited computational infrastructure. These considerations are essential 
for translating methodological advances into routine breeding practice. 

Implications for Model Selection and Tool Development 

Taken together, the results reinforce several key principles for genomic 
selection. First, no single model is universally optimal across traits or 
prediction scenarios. Second, classical linear models remain strong and 
reliable baselines, particularly for across-population prediction. Third, DL 
models can offer advantages for certain traits and datasets, but their 
success depends strongly on training population size, genomic 
architecture, and model design. Hybrid and ensemble approaches 
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consistently provide the most stable improvements, combining the 
interpretability of linear models with the flexibility of nonlinear learning. 

The primary contribution of MultiGS lies in enabling breeders and 
researchers to explore these trade-offs systematically within a unified 
framework. By integrating R- and Python-based models, supporting 
multiple marker types, and providing standardized evaluation pipelines, 
MultiGS facilitates informed model selection rather than relying on a 
single methodology. This design aligns closely with actual breeding 
workflows, where adaptability, robustness, and computational 
practicalities are as important as peak PA. 

Marker type also emerged as a critical and often underappreciated 
factor influencing prediction accuracy. Across both maize and flax 
datasets, haplotype-based markers consistently matched or exceeded SNP-
based predictions and outperformed PC-based predictions in across-
population settings (Figure 3). These results indicate that preserving local 
LD and multi-allelic information can improve robustness and accuracy, 
particularly when training populations are limited or genetically 
divergent. Consequently, effective genomic selection requires joint 
consideration of marker representation, model architecture, and training 
population characteristics rather than optimization of predictive models 
alone. 

Limitations and Future Directions 

Several limitations of this study should be acknowledged. First, 
benchmarking in the wheat2000 and maize6000 datasets relied on random 
within-population training–test splits, which approximate cross-
validation and may overestimate prediction performance relative to 
actual breeding deployment, particularly for DL models. The flax287 
dataset provided a true across-population prediction scenario, but its 
small training population limited the evaluation of high-capacity DL 
architectures.  

Second, most phenotypic data used in the present benchmarks were 
derived from single or limited environments and thus do not explicitly 
capture genotype-by-environment (G × E) interactions, which are 
pervasive in real-world breeding programs. G × E can substantially reduce 
prediction accuracy when models trained in one environment are applied 
to others, and its effects may differ between traditional GS models and 
more flexible DL architectures that can implicitly model complex and 
nonlinear responses. 

Future studies using larger and more diverse populations, combined 
with systematic across-population and across-environment validations, 
are warranted to better define conditions under which DL models provide 
consistent advantages. The MultiGS framework is readily extensible to 
multi-environment genomic selection through the integration of 
environmental covariates, reaction-norm formulations, or multi-
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environment mixed models, enabling joint modeling of genetic main 
effects and G × E interactions. 

In addition, the current MultiGS implementation focuses on single-trait 
prediction, whereas many breeding programs target correlated traits 
evaluated across multiple environments; extending the framework to 
multi-trait and multi-environment models should be incorporated in 
future iterations. Finally, although graph-based and hybrid DL models 
showed increased robustness in some settings, their performance 
remained sensitive to marker type and population structure, highlighting 
the need for improved hyperparameter optimization, automation, and 
resource management to support stable and scalable deployment in 
practical breeding pipelines. Future development will also support matrix-
based, scored marker inputs beyond VCF, enabling direct use of breeder-
curated genotype tables and alternative marker systems that are not 
readily convertible to VCF. 

CONCLUSIONS 

MultiGS was developed to support both methodological researchers 
and applied breeding programs by enabling transparent benchmarking as 
well as routine genomic prediction within a unified framework. By 
integrating traditional statistical models, ML methods, and modern DL 
architectures into a standardized workflow, MultiGS provides a practical 
platform for evaluating and deploying genomic selection across diverse 
crops and prediction scenarios.  

Across wheat2000, maize6000, and flax287 datasets, the results showed 
that classical linear models such as RR-BLUP remain strong and reliable 
baselines, while selected DL, hybrid, and ensemble models implemented 
in MultiGS achieve comparable or superior PA under appropriate 
conditions. The flax across-population case study demonstrated that 
prediction robustness, rather than peak accuracy under idealized 
validation, remains the primary challenge for actual breeding applications. 
In this context, graph-based and BLUP-integrated hybrid models exhibited 
more stable generalization than many high-capacity DL architectures. 

In addition, MultiGS DL and hybrid models delivered competitive 
accuracies with lower computational cost than previously published DL 
tools, supporting their suitability for routine use in breeding programs. In 
general, no single model is universally optimal across traits or populations. 
MultiGS addresses this challenge by providing a flexible, efficient, and 
extensible platform that enables breeders and researchers to make 
informed, scenario-specific decisions when applying genomic selection in 
practice. 
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SUPPLEMENTARY MATERIALS 

The following supplementary materials are available online: Figure S1. 
Architectures of two fully connected network and four graph-based deep 
learning models for genomic selection: (A) DNNGS, (B) MLPGS, (C) 
GraphConvGS, (D) GraphAttnGS, (E) GraphSAGEGS, and (F) GraphFormer; 
Figure S2. Architectures of three hybrid genomic selection models that 
integrate linear and deep learning components. (A) DeepResBLUP, (B) 
DeepBLUP and (C) EnsembleGS; Figure S3. Multidimensional scaling (MDS) 
analysis based on the genomic relationship matrix (GRM) for 278 training 
lines (flax287) and 260 test lines from three biparental populations, 
showing pronounced genetic structure between the two sets; Table S1. 
Linear and machine learning models implemented in MultiGS-R; Table S2. 
Summary of eight linear and machine learning models implemented in 
MultiGS-P; Table S3. Default hyperparameter settings for the machine 
learning and deep learning models implemented in MultiGS-P; Table S4. 
Genetic diversity and population differentiation between training and test 
sets across three datasets; Table S5. Prediction accuracies of five traits 
across models implemented in MultiGS-P, evaluated using a wheat 
training set of 1,600 accessions and a testing set of 400 randomly selected 
accessions genotyped with a randomly selected set of 10,000 SNP markers; 
Table S6. Prediction accuracies of three traits across models implemented 
in MultiGS-P, evaluated using a maize training set of 4,664 lines and a 
testing set of 1,167 randomly selected lines, and genotyped with 10,000 
randomly selected single nucleotide polymorphism (SNP), 5,439 haplotype 
(HAP) or 313 principal component (PC) markers; Table S7. Prediction 
accuracies of three traits across models implemented in MultiGS, 
evaluated using a flax training set of 278 accessions from a core collection 
and a testing set of 260 biparental inbred lines, with 7,363 haplotype 
markers derived from 33,895 common SNPs. 
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