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ABSTRACT 

Metabolic diseases continue to rise in global prevalence. Although there is 
evidence that current methods of treatment are effective, the continued 
rise in prevalence indicates that alternative, more efficient treatment 
options are needed. Over the last several years, immune cells have been 
increasingly studied as important players in the development of a range 
of diseases, including metabolic diseases such as obesity and obesity-
induced type 2 diabetes. This review explores how understanding the 
intrinsic metabolism of innate-like T cells could provide potential targets 
for treating metabolic disease, and highlights research areas needed to 
advance this promising therapeutic approach. 
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ABBREVIATIONS 

α-GalCer, alpha-galactosylceramide; AT, adipose tissue; CD, cluster of 
differentiation; IL, interleukin; ILT, innate-like T; iNKT, invariant natural 
killer T; MAIT, mucosal associated invariant T; MHC, major 
histocompatibility complex; PZLF, promyelocytic leukemia zinc finger; 
TCR, T cell receptor; T2DM, type 2 diabetes mellitus; Vγ9+Vδ2+, V gamma 9 
positive V delta 2 positive 

INTRODUCTION 

Type 2 Diabetes mellitus (T2DM) and obesity are intrinsically linked 
metabolic diseases, both of which are rising in global prevalence [1–3]. 
Immunometabolism represents a promising novel option to better 
understand and treat metabolic disorders. 

The amalgamation of immunity and metabolism has gained traction in 
the literature over the last decade [4] but it has been argued that the two 
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processes have been co-evolving over billions of years due to the need for 
efficient protection from external pathogens [5]. The idea of 
immunometabolism has two central concepts. The first concept is that 
cellular metabolism, as applied to immune cells, dictates cell function; and 
the second is the theory that immune cells play an integral role in the 
development and exacerbation of metabolic disease [4]. To date, immune 
cells have largely only been studied in the context of either the first or 
second concept, and due to the lack of integration of these, the impact of 
immunometabolism on metabolic disorders remains to be elucidated. 
Many studies delve into the second concept of extrinsic immune cell 
regulation of metabolic disorders through cytokine release; for example, 
how tumour necrosis factor (TNF) release can induce insulin resistance in 
adipocytes [6]. This, and immune cell migration during metabolic disease 
have been reviewed elsewhere [7–9]. However, a knowledge gap remains 
relating the effect of intrinsic immune cell metabolism—how the different 
substrates that immune cells are exposed to influences their development 
and function – and metabolic disease. 

This review explores the current literature on a specific subset of T cells, 
innate-like T (ILT) cells, and highlights gaps in scientific knowledge 
relating to the intrinsic metabolism of these cells, specifically in metabolic 
disease research, with the goal to advance our understanding in this area 
and the identification of immunotherapeutic targets. 

OBESITY-INDUCED METABOLIC DISEASE 

The pathogenesis of T2DM involves a combination of insulin resistance 
and relative insulin deficiency. Typically, obesity is the driver of insulin 
resistance and precedes the onset of T2DM, with individuals progressing 
through an intermediate phase of prediabetes where pancreatic insulin 
production and release becomes impaired and blood glucose 
concentrations begin to rise, before eventually being classified as having 
T2DM. Lifestyle interventions including dietary modification to promote 
weight loss, reducing refined carbohydrate and saturated fat, as well as 
increased physical activity are the cornerstones of T2DM management [10]. 
A range of pharmacological interventions with diverse mechanisms are 
used progressively and additively, as required, to control hyperglycaemia. 
Metformin, which predominantly reduces hepatic insulin resistance, is the 
first line agent. Newer classes of agents such as the sodium-glucose 
cotransporter (SGLT-2) inhibitors and glucagon-like peptide 1 (GLP-1) 
receptor agonists have become increasingly used as evidence mounts for 
cardiovascular and renal benefits, and finally, insulin supplementation 
may be added [11,12]. Bariatric surgery may be considered and can result 
in remission of T2DM if implemented early enough in the course of the 
disease [13]. Although the diagnosis of T2DM is based on the development 
of hyperglycaemia, the underlying mechanisms and relative contribution 
of insulin resistance and insulin deficiency are highly variable between 
individuals. Current treatments are broadly effective on an individual 
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level [14–16], but the rates of obesity and T2DM continue to increase, 
indicating a need for more effective treatments in the early stages of both. 

Obesity contributes to a chronic, low-grade inflammatory state 
occurring in adipose tissue (AT), due to the secretion of pro-inflammatory 
cytokines [17]. This inflammation leads to impaired insulin sensitivity, and 
development of T2DM by interfering with metabolic homeostasis [17–22]. 
Balance is critical. One murine study has found that low grade 
inflammation in AT is essential for normal adipogenesis and the 
accumulation of fat tissue, preventing ectopic fat deposition [23]. This 
study posits that acute inflammation is requisite for maintaining 
homeostasis. However, if chronic inflammation develops, it is likely to be 
detrimental. Together with other factors independently associated with 
insulin resistance, such as an abundance of free fatty acids (FFA), the 
chronic inflammatory response observed in obesity becomes pathological 
[18,24]. Overall, it would seem that a multitude of factors contribute to the 
inflammatory state of individuals suffering from obesity and obesity-
induced T2DM. While it is plausible that some degree of acute 
inflammation is necessary to maintain homeostasis, it is not yet known to 
what degree this is, and at what point it begins to become detrimental. 
Inflammation is controlled by various cells in the immune system; 
therefore further research into immune cells could provide insight for 
potential immunometabolic therapeutic targets. 

METABOLIC PROFILE OF T CELLS 

A previous review article explains the intricately interlaced and diverse 
metabolic pathways influencing lymphocyte fate [25]. Briefly, naïve T cells 
are quiescent for extended periods, utilising fatty acid β-oxidation, 
oxidative phosphorylation and pyruvate oxidation to support their basal 
functions [26]. Once activated, bioenergetic demand increases as they 
undergo clonal expansion, and metabolic reprogramming stimulates 
glycolysis, the pentose phosphate pathway and glutaminolysis to dominate 
[27]. Enhanced glycolysis has been found to occur in a number of activated 
immunological cells including dendritic cells, NK cells, macrophages and 
T and B lymphocytes [28,29]. This phenomenon of aerobic glycolysis taking 
place when sufficient oxygen is available to support oxidative 
phosphorylation is known as the Warburg effect [30] which has been 
thoroughly reviewed elsewhere [31]. Although the ATP yield of glycolysis 
is comparatively lower than that of oxidative phosphorylation, it remains 
an essential pathway to produce a multitude of metabolic intermediates 
which can be shunted into anabolic systems [32]. Alternatively, increasing 
oxidative phosphorylation would necessitate generation of mitochondria, 
which is an energetically expensive and time-consuming process [29]. 
Enhanced aerobic glycolysis therefore enables cells to efficiently generate 
both a sufficient amount of ATP, as well as a number of the required 
biosynthetic metabolites that enable it to carry out its effector function. 
However, mitochondria do not lay dormant during aerobic glycolysis, as 

Immunometabolism. 2020;2(4):e200031. https://doi.org/10.20900/immunometab20200031 

https://doi.org/10.20900/immunometab20200031


 
Immunometabolism 4 of 19 

was once imagined. Carbon-13 labelling has shown that some pyruvate 
generated by glycolysis is oxidised by mitochondria in human cancer cells 
[33]. Similarly, mice lacking a functional mitochondrial complex III 
display impaired activation [34], indicating that cells utilise both ATP-
generating systems during this time. 

INNATE-LIKE T CELLS 

Innate-like T (ILT) cells bridge the gap between the two arms of 
immunity through an alteration of the TCR response [35]. These cells are 
classed as a subset of T lymphocytes but are unconventional, or innate-like 
in their rapid response upon activation. ILT cells express a semi-invariant 
TCR and are restricted by conserved, monomorphic MHC-like molecules 
[36–38]. The predominant ILT cells in humans are invariant natural killer 
T (iNKT) cells, mucosal associated invariant T (MAIT) cells and γδ T cells 
expressing the γ9 and δ2 TCR chains (Vγ9+Vδ2+ T cells), which are 
restricted by CD1d, MHC related molecule (MR)1 and butyrophilin 
(BTN)3A1 respectively [39–41]. Similar to conventional T cells, ILT cells 
mature in the thymus from hematopoietic precursor cells and express the 
pan-T cell marker CD3 [42].  

One of the major gaps in ILT cell knowledge is with regard to activation. 
It is known that ILT cells possess the ability to become activated from 
either their TCR, through cytokine signalling, or both, an ability afforded 
by the expression of the ILT-specific transcription factor PLZF [43]. 
However, the effect each method of activation has on cell function, 
whether simultaneous stimulation elicits a different response and the 
relevance of both for AT health and disease, remains to be fully 
elucidated [38,44]. 

Invariant Natural Killer T (iNKT) Cells 

iNKT cells are so named due to their expression of the natural killer cell 
marker NK1.1 [45,46], as well as their ability to proliferate exponentially 
upon activation in the thymus. The iNKT cell TCR is comprised of an α- and 
a β-chain. The α-chain is invariant (Vα24-Jα18 in humans) and associates 
with a small repertoire of β-chains, predominantly Vβ11 in humans, which 
recognise lipid antigens presented by CD1d [47]. Not to be confused with 
non-invariant NKT cells which possess a comparably more diverse TCR 
repertoire. α-Galactosylceramide (α-GalCer) is the prototypical antigen of 
iNKT cells. Along with iNKT cells exhibiting memory cell characteristics, 
activation induces the rapid release of cytokines, and cytotoxic 
capabilities [48].  

In murine models of disease, enhanced activity and/or frequency of 
iNKT cells has been associated with allergic asthma [48], alcoholic and 
nonalcoholic liver disease [49,50], and ischemia-reperfusion injury 
resulting from sickle cell disease [51]. Increased frequency of activated 
iNKT cells was observed in the circulation of human participants with 
sickle cell disease [52] and nonalcoholic steatohepatitis [50]. Conversely, 
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decreased frequencies of circulating and splenic iNKT cells was correlated 
with human herpesvirus 8 and multicentric Castleman disease [53]. These 
somewhat contradictory observations suggest that solely analysing the 
frequency of iNKT cells in patients should not be used to predict their 
influence on disease. Instead, a better understanding of their metabolic 
demands may provide valuable insights for their therapeutic targeting. 

NKT cells differ from their conventional CD4+ T cell counterparts in that 
NKT cells metabolise glucose through the pentose phosphate pathway (PPP) 
and tricarboxylic acid (TCA) cycle, as opposed to being converted to lactate 
via glycolysis [54]. In keeping with this, a recent study on the metabolic 
profile of T cells in PBMCs demonstrated that key metabolites for the TCA 
cycle and fatty acid oxidation were higher in NKT cells than conventional 
CD4+ T cells [55]. Activation in iNKT cells is associated with enhanced 
glycolysis. However, activated iNKT cells are also characterized by 
increased mitochondrial capacity, further confirming that aerobic 
glycolysis and oxidative phosphorylation are not mutually exclusive 
processes [56]. Aerobic glycolysis is required for optimal iNKT cell IFNγ 
production through increased TCR recycling [56] but it is not essential for 
T cell proliferation and survival in general [57]. The finding of a positive 
feedback loop via aerobic glycolysis generates a mechanistic link between 
TCR engagement and IFNγ secretion. Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) is the key glycolytic enzyme influencing this 
mechanism. When GAPDH is not involved in glycolysis it acts as a 
translational inhibitor for IFNγ mRNA. During glycolysis, it carries out its 
classical enzymatic function and is therefore not available to inhibit IFNγ 
production [57]. 

Mucosal Associated Invariant T (MAIT) Cells 

Monomorphic MHC class-I related molecule, MR1, presents riboflavin 
precursors and metabolites to a semi-invariant αβ TCR found on MAIT 
cells. As such, these cells are primarily activated by bacteria and fungi, but 
have also shown activation in response to viral infections [37,58]. 
Interestingly, activation in response to viral infection is a TCR independent 
process and has been shown to occur through IL-18 signalling, in 
combination with IL-12, IL-15 or IFN-α/β [59], indicating that this ILT cell 
subset has the capacity to respond to inflammatory signals. MAIT cells 
tend to reside in mucosal tissues, hence their name, but are also found in 
abundance in human blood and liver under standard physiological 
conditions [60,61]. Combinations of MAIT cell TCR in humans are Vα7.2 
joined to Jα33, Jα20 or Jα12, and paired with a limited β-chain repertoire 
[62]. MAIT cells were once difficult to target due to their partial phenotypic 
overlap with other T cell subtypes. For example, historically, MAIT cells 
were identified on the basis of being CD3+, Vα7.2+ and CD161hi [62], 
however germline-encoded, mycolyl lipid-reactive TCRs share the Vα7.2 
TCR [63]. Additionally, CD161 has been known to downregulate upon MAIT 
cell activation, which led to the erroneous assumption of MAIT cell loss 
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associated with HIV infection [64,65]. Reantragoon et al. solved this issue 
by developing a tetramer which, when bound to a MAIT cell agonist such 
as 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), was able 
to distinguish MAIT cells ex vivo [62]. 5-OP-RU is a potent agonist inducing 
MAIT cell activation and is therefore a valuable antigen in MAIT cell 
research [66]. Upon activation in humans, MAIT cells migrate to infected 
tissues, secrete pro-inflammatory cytokines, including IL-17 [36], and exert 
cytotoxic functions [61]. They are also characterized by a tissue resident 
and memory T cell phenotype [67]. 

Microbial colonization controls MAIT cell development [68]. 
Environmental bacteria are thought to shape the TCR repertoire of MAIT 
cells and thereby increase their ability to identify cells with bacterial 
infections [39]. MAIT cell frequency in blood was found to increase from 
birth, peak between ages 20–29, and progressively decline with further 
ageing [56,69]. The cause-effect relationship of reduced MAIT cell numbers 
in blood is currently unclear but could lead to an increased risk of 
microbial infection, since MAIT cells function as microbial sentinels. 

MAIT cells have been implicated in immune diseases such as multiple 
sclerosis (MS) and inflammatory bowel disease (IBD), with the frequency 
of MAIT cells in blood decreasing during MS disease progression and 
increasing during remission [70]. Similarly, in IBD, the frequency of MAIT 
cells in blood decreases, and activated MAIT cells accumulate in inflamed 
mucosa [71,72]. Additionally, blood-derived MAIT cells from IBD patients 
activated in vitro secreted significantly more IL-17 compared to healthy 
controls. These findings may suggest that MAIT cell dysfunction in blood 
and tissues may have pathogenic effects. 

The intrinsic immunometabolic regulation of MAIT cell activity has 
almost exclusively been studied in the context of metabolic disease and is 
therefore discussed in the dedicated section below. 

Vγ9+Vδ2+ T Cells 

Human γδ T cells are typically categorized according to their TCR Vδ 
chain. Of the eight functional human Vδ gene segments, the first three, i.e., 
Vδ1, Vδ2 and Vδ3, are the most commonly used in the human γδ T cell 
repertoire [73]. Importantly, Vδ2 is almost exclusively paired with Vγ9 and 
the resulting Vγ9+Vδ2+ T cell population represents the largest γδ T cell 
subset in human blood, and the only one commonly referred to as innate-
like [73–77]. In mice and humans, γδ T cells are particularly enriched in 
tissue such as AT, as compared to the circulation and lymphoid organs [78]. 
Of particular relevance, and in contrast to the compositional bias of blood, 
Vδ1+, Vδ2+ and Vδ3+ T cells are found enriched and reach comparable 
frequencies in human AT [79]. 

While the antigen specificity of Vδ2− T cells remains an area of intense 
investigation, Vγ9+Vδ2+ T cells are specifically and exquisitely sensitive to 
the presentation of phosphoantigens, including endogenous prenyl-
pyrophosphates, through the MHC-unrelated molecules BTN3A1 and 
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BTN2A1 [80]. An increase in host cell intracellular phosphoantigen levels 
is associated with a conformational change in BTN3A1, followed by 
Vγ9+Vδ2+ T cell activation and associated cytolytic and effector 
functions [81].  

The clinical relevance of Vγ9+Vδ2+ T cells has for the most part been 
studied in the context of cancer immunology, consistent with Vγ9+Vδ2+ T 
cells’ potent ability to recognize and kill tumour cells [82,83]. However, 
Vγ9+Vδ2+ T cells may also play a protective role against malaria and other 
infectious disease [73,84], due to their ability to recognize microbial-
derived phosphoantigens [85]. 

The intrinsic immunometabolic pathways governing Vγ9+Vδ2+ T cell 
function have not been studied in any detail. 

INNATE-LIKE T CELLS IN METABOLIC DISEASE RESEARCH 

In the context of metabolic disease, ILT cells have largely been studied 
in isolation, with few research studies analysing more than one subtype at 
a time. One review article links MAIT cells to metabolic disease [86]. A low 
proportion of circulating MAIT cells, for example, has been implicated in 
obesity and T2DM, with obese individuals harbouring more MAIT cells in 
their AT compared to healthy controls, implying that they have been 
recruited by a stimulus from the excess AT. Moreover, the MAIT cells in AT 
have an IL-17 profile, and therefore probable inflammatory phenotype 
[87,88]. Further research confirmed these findings, concluding that AT 
resident MAIT cells are enriched in people who are obese or have T2DM. 
The production of IL-17 was positively correlated with insulin resistance, 
while the production of the anti-inflammatory cytokine, IL-10 appeared to 
be down-regulated [89]. It has been reported that the adoption of an IL-17 
phenotype by MAIT cells in obesity is due in part to dysfunctional 
mitochondria, stemming from an increase in mitochondrial reactive 
oxygen species in obese individuals compared to healthy controls [90]. 
Metabolic disease generally appears to correlate with reduced circulating 
MAIT cells, which adopt a pro-inflammatory phenotype. This occurs in 
patients with alcoholic and non-alcoholic fatty liver disease, and a number 
of cardiometabolic disorders [91,92]. It is still uncertain whether these 
cells accumulate in the affected tissue, or whether they simply undergo 
apoptosis, although increasing glucose concentration did induce MAIT cell 
apoptosis in vitro [92]. Furthermore, MAIT cell reduction in peripheral 
blood has been correlated with increased glycated haemoglobin, a 
symptom of T2DM pathogenesis. Finally, MAIT cells from obese 
individuals fail to substantially increase their rate of aerobic glycolysis 
upon activation [93], which could interfere with a number of intrinsic 
metabolic pathways, from deficient cytokine release, to mitotic 
impairment. Indeed, stimulatory cytokine, IFNγ production is impeded as 
a direct result of insufficient aerobic glycolysis during activation [57,93]. 

Complementing aspects of ILT cell biology relevant for metabolic 
homeostasis and disease have been addressed in humans and mice, but a 
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unifying picture is lacking due to incomplete understanding of functional 
overlap or redundancy between ILT cells. There is some evidence to 
suggest that iNKT cells play a protective role in metabolic disease [94]. In 
particular, the activation of iNKT cells with their prototypical agonist, α-
GalCer, has been shown to support weight loss and glycemic control in 
mice [95,96]. The mechanism of action for this appears to be due in part to 
iNKT cell activation of fibroblast growth factor 21 (FGF21), which led to 
increased thermogenesis and browning of white adipose tissue in mice 
[97]. But whether iNKT cell frequency in humans is sufficient to promote 
similar health outcomes, provided their functional role in human disease 
is similar, is currently unknown. Interestingly, FGF21 expression can also 
be induced by GLP-1, a pharmacological agent mentioned previously to 
treat T2DM pathogenesis [97]. In lean AT, iNKT cells are generally thought 
to contribute to inflammatory homeostasis. In mice, AT residing iNKT cells 
secrete IL-2 and IL-10 [98], and splenic iNKT cells secrete IL-10 [99]. Both 
promote the accumulation of regulatory T cells, which implies that iNKT 
cells contribute to the maintenance of immune homeostasis. These cells 
are depleted in the omental AT of obese individuals [100] which could 
contribute to the inflamed AT environment. However, there remains 
conflicting data on whether NKT cells in general play a protective or 
pathogenic role in metabolic disease, as mice lacking the iNKT cell TCR unit 
Jα18 displayed reduced weight gain and a better metabolic profile 
compared to wild type [101,102].  

Jα18−/− mice were used since their development in 1997 [103] as models 
for iNKT deficiency. However, Bedel et al. discovered in 2012 that the 
particular methodology used for the genetic deletion caused loss of an 
estimated 60% of Jα-chain diversity, which consequently also led to an 
indirect MAIT cell deficiency in these mice [104]. Following this surprising 
finding, the original authors generated novel Traj18 deficient mice [105]. 
Thus, conclusions drawn from experiments using the original strain of 
Jα18−/− mice should be attributed to a lack of both iNKT and MAIT cells. 

Murine AT-resident γδ T cells are described as important mediators of 
thermogenesis and AT homeostasis in mice through their secretion of IL-
17 [79], but whether human Vγ9+Vδ2+ T cells equally contribute to 
metabolic homeostasis remains to be established. Arguably, this function 
may be carried out by MAIT cells which, as stated previously, have been 
shown to adopt an IL-17-producing phenotype in people with obesity and 
T2DM. The effect of Vγ9+Vδ2+ T cells was studied in the context of metabolic 
bone disease, osteoporosis, with data showing increased activity of 
Vγ9+Vδ2+ T cells after the use of bisphosphonates, namely zoledronic acid, 
both in vitro and in vivo [106,107]. Authors indicate Vγ9+Vδ2+ 
differentiation towards an effector-memory like phenotype, reducing 
bone loss. To complement this, a randomized control trial involving 60 
post-menopausal women with prediabetes and osteopenia who received 
12 weeks of either 70 mg/week bisphosphonate or a placebo, found a 
positive correlation between the group receiving bisphosphonates and 
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their fasting plasma glucose and HbA1c concentration. These clinical data 
suggest that Vγ9+Vδ2+ T cell activation by bisphosphonates may be 
beneficial for metabolic disease [108]. In the context of obesity, one study 
found that when Vγ9+Vδ2+ T cells are activated, they take up LDL, which 
can be toxic to the cell. As the intracellular concentration of LDL increased, 
Vγ9+Vδ2+ T cells downregulated their metabolism, measured by decreased 
mitochondrial mass, decreased cellular ATP, and lower production rates 
of secreted effector cytokines [109]. Therefore, obese individuals with a 
higher proportion of circulating LDL may have impeded functionality of 
Vγ9+Vδ2+ T cells, leading to increased risk of cancer, and potentially other 
diseases yet to be linked to the dysfunction of this ILT cell subtype. 

The predominantly protective effect described so far for iNKT and 
Vγ9+Vδ2+ T cells in obesity and T2DM, which contrasts with the proposed 
pathogenic role attributed to MAIT cells, is reflected in a pilot study 
recently conducted by Li et al. [110]. The results from this study, the first 
side-by-side analysis of phenotype and function of human blood-derived 
iNKT, MAIT and Vγ9+Vδ2+ T cells, indicated that iNKT cells and Vγ9+Vδ2+ T 
cells concomitantly ceased to produce the regulatory cytokines IL-2 and 
IL-4, while MAIT cells secreted larger amounts of IL-17. It is interesting to 
note, although perhaps unrelated, that both iNKT and Vγ9+Vδ2+ T cells may 
encounter their cognate antigens in AT, during homeostasis. Endogenous 
glucosylceramides and prenyl-pyrophosphates can indeed be presented 
by adipocytes to iNKT cells and Vγ9+Vδ2+ T cells through the 
glucosylceramide biosynthesis and mevalonate pathways, respectively 
[111,112]. The higher rates of T2DM associated with the use of statins [113], 
which block the mevalonate pathway upstream of phosphoantigen-
formation, suggests that homeostatic adipocyte-ILT cell crosstalk may 
have a significant role for metabolic health. Since MAIT cell development 
is entirely dependent on exogenous bacterial metabolites, MAIT cell 
activation in AT can only occur upon translocation of microbes and/or 
associated metabolites into AT [114], or TCR-independent activation. It will 
be important to establish, in future studies, if and how the hypertrophy 
and altered metabolism of adipocytes, as well as obesity-associated 
microbial translocation, are mechanistically linked to the collective ILT-
specific dysfunction observed in obese and T2DM patients. 

Although the AT microenvironment may provide unique tissue-specific 
cues and stimuli, careful consideration needs to be given to the potentially 
intrinsic difference between circulating and AT resident ILT cells. It is well 
documented that ILT cell development relies on the expression of the 
transcription factor PLZF, as ILT cells are virtually absent in promyelocytic 
leukemia zinc finger (PLZF)-deficient mice and humans [115–119]. While 
ILT cells largely retain the expression of PLZF in the periphery, AT-
resident iNKT cells have been shown to express the basic leucine zipper 
transcription factor E4BP4 instead [98], a phenomenon which may be at 
least partly due to distinct TCR signalling events [120]. Whether similar 
discrepancies exist between circulating and AT-resident MAIT and 
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Vγ9+Vδ2+ T cells is currently unknown, but of high interest. In terms of the 
frequencies of the three ILT subsets and their contribution to disease, 
Magalhaes et al. find that in the AT of obese participants, there was no 
significant difference between groups [87]. 

Immunometabolic discovery platforms have recently gained 
significant commercial value. In the context of obesity and metabolic 
disease important questions remain to be answered before 
immunometabolic strategies can be therapeutically applied. For example, 
if MAIT cells are indeed pathogenic, and iNKT and Vγ9+Vδ2+ T cells 
protective, would it be more effective to immunometabolically target 
MAIT cells’ Th17 phenotype, or attempt to promote IL-10 or IL-4 secretion 
by iNKT and Vγ9+Vδ2+ T cells, and would either approach influence the 
other? Alternatively, assuming an altered production and presentation of 
iNKT/Vγ9+Vδ2+ T cell agonists in inflamed AT is at least partly responsible 
for their dysfunction, would it be more effective to therapeutically target 
adipocyte instead of iNKT/Vγ9+Vδ2+ T cell metabolism? 

CONCLUSIONS 

Metabolic flexibility and substrate selection have been established as a 
fundamental aspect of immune cell function [25,29]. However, gaps 
remain in the literature of ILT cell biology in the context of metabolic 
disease, specifically obesity induced T2DM. Not only have the three ILT 
cells described in this review been predominantly studied in isolation, 
much of the research has been conducted in murine models, which poses 
problems in transferability to humans due to the proportion of these cells 
varying across species by orders of magnitude [121]. To this end, there is 
still much debate over whether each of the three subsets of ILT cell play a 
pathogenic or protective role in metabolic disease, with many reporting 
iNKT and Vγ9+Vδ2+ cells as protective, and MAIT pathogenic, with no 
apparent link to their respective frequencies in human AT and peripheral 
blood [87]. Moreover, the metabolic profile of circulating ILT cells and 
their comparison to conventional T cells is still being determined. Much of 
the work completed in this field has been limited to iNKT and MAIT cell 
metabolism, with virtually no information available regarding Vγ9+Vδ2+ 
cells. Since ILT cells exhibit traits of resident memory T cells [67] and rely 
on the expression of PLZF for thymic development [116,122], they are 
likely to rely on different metabolic programs for homeostatic 
maintenance as compared to conventional T cells [54,123]. Whether PLZF 
drives immunmetabolic overlaps between ILT cells remains to be 
addressed. Altered activity of ILT cells has been associated with diseases 
outlined in this review but research is lacking in the context of how the 
intrinsic metabolism of immune cells influences metabolic disease. 
Because immunometabolism is an area in which ILT cells remain poorly 
understood, gathering data on the metabolism of these cells under healthy 
conditions, and comparing between groups in various stages of T2DM 
pathogenesis will provide a foundation for future research into this 
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heterogeneous lymphocyte subtype. Additionally, next steps include 
addressing the major knowledge gap in working with ILT cells currently 
by providing a framework for transferring data collected in mice to 
humans for therapeutic purposes. While preclinical models remain a 
logical approach for the development of novel therapeutics, clinical 
translation, at least in proof-of-concept form, needs to occur more rapidly 
than in similar areas of research. 
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