
 ij.hapres.com 

Immunometabolism. 2021;3(1):e210002. https://doi.org/10.20900/immunometab20210002 

Perspective 

Gearing up for the Future: Mitigating 
Dysregulated Inflammation in Aging and  
Facets of Obesity  
Weili Xu 1, Anis Larbi 1,2,3,* 

1 Biology of Aging Program and Immunomonitoring Platform, Singapore 

Immunology Network (SIgN), Agency for Science Technology and Research 

(A*STAR), Immunos Building, Biopolis, Singapore 138648, Singapore 
2 Department of Geriatrics, Faculty of Medicine, University of Sherbrooke, 

Sherbrooke, QC J1K 2R1, Canada 
3 Department of Microbiology, National University of Singapore, Singapore 

117597, Singapore 

* Correspondence: Anis Larbi, Email: anis_larbi@immunol.a-star.edu.sg;  

Tel.: +65-64070412. 

ABSTRACT 

A 20% global increase in the number of obese individuals is likely to occur 

by 2030. Projections for the US alone suggest that 85% of the population 

may be overweight or obese by 2030. This is a worrying trend, as obese 

individuals exhibit many symptoms of metabolic syndrome (MS). In the 

first section of this review, we cover recent literature describing how 

obesity and aging have a similar impact on the immune system by 

contributing to chronic low-grade inflammation. In the second section, we 

describe potential interventions that could mitigate physiological changes 

associated with obesity and aging, and discuss future studies that would 

be necessary to elucidate the impact of obesity on immunity and 

metabolic health in order to further the advancement of precision 

medicine. 
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HLADR: Human Leukocyte Antigen DR 

HIF: Hypoxia Induce Factor 

HPB: Health Promotion Board 

IL: Interleukin 

mTOR: Mammalian Target of Rapamycin 

MS: Metabolic Syndrome 

ROS: Reactive Oxidative Species 

RNA: Ribonucleic Acid 

SASP: Senescent Associated Secretory Phenotype 

T2DM: Type 2 Diabetes Mellitus 

TAME: Targeting Aging with Metformin 

TH: T Helper 

TLR4: Toll-like Receptor 4 

TNF-α: Tumor Necrosis Factor α 

VAT: Visceral Adipose Tissue 

US: United States 

WHO: World Health Organization 

OBESITY AND AGING INDIVIDUALS ON THE RISE GLOBALLY 

Globally, the population of obese individuals is likely to grow by 

another 20% before 2030 [1]. In the US alone, 85% of the adult population 

could be overweight or obese by 2030 [2]. Obese individuals present with 

high rates of clinical morbidities, such as those described within metabolic 

syndrome (MS). MS is a cluster of conditions in which individuals present 

with impaired regulation of various metabolites, such as glucose and lipids 

[3,4]. This results in a host of symptoms such as hyperglycemia, 

hyperlipidemia, hypertension and excessive visceral fats. These symptoms 

are strongly associated with an increased risk of cardiovascular disease, 

stroke and type 2 diabetes [5]. The rise of obesity in recent decades has 

been exacerbated by the shift from manual labour to sedentary jobs, as 

well as changes in eating behaviour where individuals favour a high 

glucose, high salt and high fat diet [6]. To mitigate the rising healthcare 

burden caused by obesity, global and local organisations such as the WHO, 

CDC (US) and HPB (Singapore) have been strongly advocating that people 

should adopt an active lifestyle and moderate their consumption of 

unhealthy food [7–9]. 

In parallel with rising obesity, global populations are also rapidly aging, 

with the number of elderly (≥60 years of age) expected to reach 1.4 billion 

in 2030 and 2.1 billion in 2050 [10]. While chronological aging is a natural 

phenomenon, it is associated with an increased susceptibility to many life-

threatening conditions such as infectious disease, cancer, cardiovascular 

disease and stroke [11,12]. Thus putting a strain on global healthcare 
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systems. The concomitant rise in obese and aging populations is set to 

present global healthcare systems with unprecedented challenges.  

While obesity has been traditionally determined by body mass index 

(BMI), this metric alone may be insufficient to identify individuals at high 

risk of developing obesity-related morbidities due to their 

disproportionate fat and nutrient density. There is thus a clinical need to 

broaden our definition of obesity to incorporate parameters such as 

metabolism and visceral fat distribution, especially in the case of elderly 

individuals, who often have irregular fat distribution that is masked by 

acceptable BMI criteria [13]. With these perspectives, we hope to stimulate 

further research exploring the interactions between obesity, aging and 

immunity. In particular, insights into the immune aspects of ageing and 

obesity may pave the way for potential interventions that could alleviate 

the healthcare burden. 

LOW-GRADE CHRONIC INFLAMMATION AND A DYSREGULATED 
IMMUNE SYSTEM: SIMILARITIES BETWEEN OBESITY AND AGING  

Low-Grade Chronic inflammation is a phenomenon central to both 

obesity and aging. Obese individuals have been shown to exhibit higher 

systemic levels of pro-inflammatory cytokines such as CRP, TNFα and IL-6 

compared to healthy individuals. A similar phenomenon that occurs 

during aging has been described by Claudio Franceschi as ‘inflammaging’ 

[14–17]. While regulated acute inflammation is a necessary immune 

response to resolve infections and encourage tissue expansion, chronic 

inflammation is detrimental to the host [18]. Studies have shown that 

obesity-associated inflammation in adipose tissue damages the liver by 

encouraging the release of reactive oxygen species (ROS) and promoting 

cell death, leading to hepatocarcinogenesis. This is due to the secretion of 

excessive free fatty acids (FFAs) by hypertrophic adipocytes, which 

promotes the local release of pro-inflammatory cytokines [19–27]. Apart 

from damaging the liver, obesity-associated inflammation can also cause 

β-cell dysfunction and impaired glucose metabolism [28], which can lead 

to Type 2 Diabetes Mellitus (T2DM). In particular, the pro-inflammatory 

cytokine TNFα has been shown to promote glucose intolerance [29] and 

impair glucose metabolism, resulting in high glucose levels that contribute 

to endothelial inflammation [30].  

In addition to exhibiting dysregulated metabolism and inflammation, 

obese individuals on the higher end of the BMI spectrum (>35) have also 

been shown to benefit less from influenza vaccination [31,32]. While the 

mechanisms remain unclear, this could be due to the accumulation of 

visceral adipose tissue (VAT). This generates a chronic pro-inflammatory 

milieu as adipocytes are activated, begin expressing HLADR, and activate 
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adipose resident T cells through the Stat3 pathway [33,34]. In addition, 

accumulated VAT has been shown to have substantial infiltration of pro-

inflammatory immune cells such as macrophages, neutrophils, B cells, 

TH1 CD4 T cells, TH17 CD4 T cells, γδ T cells and CD8 T cells. Moreover, as 

the VAT environment is hypoxic and rich in FFA, it promotes the activation 

of VAT-infiltrating macrophages via the HIF-1α and TLR4 signalling 

pathways, leading to the production of TNFα and further establishing a 

pro-inflammatory environment [35–38]. These multiple factors could 

work in concert to overwhelm the anti-inflammatory cytokines and 

environment produced by TH2 CD4 T cells, iNKT and Treg cells [39–45].  

Senescent cells (i.e., fibroblasts, T cells, B cells and NK cells) that exhibit 

a senescent secretory associated phenotype (SASP) are often implicated in 

the sustenance of chronic low-grade inflammation in aging, because these 

cells are able to secrete pro-inflammatory cytokines without antigenic 

stimulation [46–51]. The accumulation of these senescent cells could be 

due to a dysfunctional immune system; indeed, Ovadya et al. have shown 

that an impaired immune system accelerates the accumulation of 

senescent cells [52]. Two main factors have been implicated in the 

accumulation of senescent T cells with age: an individual’s cumulative 

infection history over the course of their lifetime (exacerbated by chronic 

infections), and thymic involution [51,53–55]. In support of the former, 

studies showed that age-matched individuals (from age 1 to >60) with CMV 

infection exhibited higher proportions of senescent, exhausted and 

terminally differentiated T-cells [56,57]. 

Based on the similarities in the detrimental health impacts of obesity 

and aging, the term ‘adipaging’ has been used to describe the elevated 

levels of inflammation associated with chronic obesity, as obese 

individuals tend to be characterised by higher biological age [58]. Due to 

the low-grade chronic inflammation generated in the VAT, obesity could 

possibly induce telomere attrition and higher oxidative stress, and have 

negative influences on mitochondria and genomic stability [59–62]. These 

phenomena are reminiscent of the various hallmarks of aging [63]. 

However, as obesity and aging are not mutually exclusive, there is 

potential for obesity to compound the impact of aging on various 

physiological systems. This has been observed in a condition described as 

sarcopenic obesity, where muscle loss is accompanied by fat tissue gain 

implying a loss of endothelial cell tissue and a concomitant accumulation 

of fat in the thymus and other organ systems [55,64–66]. An important 

question to address is how interactions between muscle loss and fat gain 

affect immunological homeostasis in organs. Many studies have indicated 

a negative effect that correlates with increasing age, as obesity raises the 

health-risk in middle-aged adults, but at a rate that declines with 
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increasing age between 60–80 years of age [67]. Nevertheless, later studies 

have shown that a shift in body fat distribution and an increase in visceral 

fats with age contribute to a greater likelihood of heart disease and type 2 

diabetes [68].  

The complex interactions between aging and obesity suggest that 

determining health risk profiles by BMI alone may be restrictive, 

especially for the elderly as visceral fats contribute less towards BMI. 

While most of the focus has been on adults and the elderly, the impact of 

obesity has not been thoroughly investigated in early life (i.e., new-born to 

the 2nd decade of life). Notably, maternal gestational diabetes has been 

observed to contribute to obesity in early life [69–72]. As children in the 

modern era navigate towards less physically demanding lifestyles [73], 

they may be more prone to accelerated aging caused by obesity, and the 

early onset of immunological aging may have grave implications on their 

immunological health and well-being in later life. In light of this, future 

studies should focus on this younger demographic. While the mechanisms 

for immune dysregulation and the source of pro-inflammatory cytokines 

are different in obesity and aging, both affect the functional capacity of the 

immune system and increase basal systemic inflammation levels. As such, 

both conditions predispose individuals to an increased susceptibility to 

infectious diseases, as seen in the current COVID-19 pandemic [74–77].  

IMMUNOMETABOLISM AND AGING INTERVENTIONS: DIETARY AND 
DRUGS  

Caloric restriction and intermittent fasting have been suggested as 

potential dietary interventions to counteract the immune effects of aging 

and obesity. Both have been shown to reduce oxidative stress, improve 

mitochondrial function and result in BMI reduction due to limited caloric 

intake [78,79]. Besides dietary intervention, drug interventions involving 

Rapamycin and Metformin have also been proposed and tested. 

Rapamycin, which targets the mTOR pathway, has been shown to improve 

vaccine efficacy in mice [80]. RAD001, an mTOR inhibitor, was shown to 

increase immune function and boost influenza vaccine responses in 

elderly individuals [81,82]. The latter is an important discovery, as 

vaccination remains one of the most cost-effective healthcare strategies 

for controlling infections, but has been shown to have reduced efficacy in 

elderly individuals. While Metformin is widely used to improve insulin 

sensitivity in diabetic patients, recent studies have shown that metformin 

could be a tool to ameliorate aging. The TAME trial attempts to capitalise 

on this discovery by repurposing the drug for the mitigation of 

inflammaging [83].  
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Since senescent cells contribute to low-grade chronic inflammation in 

the host by releasing inflammatory mediators, there is a growing focus on 

the use of senolytics to reduce inflammaging by promoting the removal of 

senescent cells [84,85]. Senolytics work by inhibiting anti-apoptotic 

signalling such as via the PI3K/AKT-, p53/p21/serpine-, HIF-1α- and BCL-

2/BCL-XL pathways. A recent study demonstrated that the combinatorial 

use of dasatinib and quercetin can promote pre-adipocyte differentiation, 

reduce macrophage infiltration and improve glucose homeostasis and 

insulin sensitivity by eliminating senescent cells from adipose tissue [86]. 

Besides dasatinib and quercetin, navitoclax and fistein are also currently 

being tested for senescent cell removal [87,88]. As each drug has a narrow 

range of specificity for certain senescent cell types, as well as different side 

effects, it is important to explore a wide range of senolytics to optimise 

their usage. For example, we now understand that dasatinib selectively 

targets senescent adipose progenitors and quercetin eliminates senescent 

endothelial cells [84]. The specificity of senolytics is likely to limit their 

toxicity, while the capacity of some drugs to specifically target adipocyte 

progeny suggests that they may be even more advantageous in the context 

of obesity [89,90]. Collectively, senolytics aim to improve quality of life by 

negating dysregulated metabolic processes and inflammation by targeting 

cellular sources of immune activation.  

FACETS OF OBESITY: IMPACT ON IMMUNITY AND CHRONIC 
INFLAMMATION? 

Obesity is a chronic non-communicable disease that is associated with 

cardiovascular disease and diabetes mellitus [91]. Research in the past 

decade has shown that obesity can manifest itself in different ways. BMI 

has been adopted as a traditional approach that classifies individuals into 

categories such as underweight, normal, overweight and class 1, 2 and 3 

obesity based on height and weight [92]. While this is efficient and cost-

effective, it requires further calibration to determine guidelines that are 

suitable for different ethnicities [92]. To circumvent ethnic-specific 

differences in build, studies have included ethnic-based BMI and the 

measurement of visceral fat mass to more sensitively stratify individuals 

according to their predisposition towards cardiovascular diseases and 

diabetes [93,94]. However, this approach is still not sensitive enough to 

identify people that have metabolic obesity (thin-fat) but exhibit normal 

weight [95,96]. Similarly, people who are obese in terms of BMI but exhibit 

normal metabolic physiology (fat-thin) may be inaccurately classified by 

this system [97,98]. However, there are many overlaps in the health risks 

faced by thin-fat, fat-thin and obese individuals. Whether these thin-fat 

and fat-thin phenotypes exist along the same obesity-associated morbidity 
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risk spectrum that includes obese individuals is unknown and requires 

further study. For individuals with these different types of irregular fat 

distribution, it is pertinent to investigate how their unique physiology 

impacts their metabolism and immune system, so that we have a more 

universal and accurate method to profile at-risk individuals for 

therapeutic interventions.  

POTENTIAL RESEARCH GAPS AND TOOLS: SINGLE CELL 
EPIGENETICS, NON-CODING RNA AND MITOCHONDRIA 

Lifestyle modifications such as diet and physical activity, and drug 

interventions such as metformin, are potential cost-effective interventions 

for aging and obesity. However, the mechanisms by which they operate 

are not well understood. The field of epigenetics, which studies the impact 

of histone modifications on the repression or activation of genes, is a 

useful tool that can demonstrate how lifestyle and the environment can 

affect cellular behaviour. Due to differences in cellular environment, 

interventions can have a diverse range of effects on their targets. Single-

cell epigenetics may provide better resolution to help us make sense of this 

heterogeneity. In addition, non-coding RNA such as microRNA could play 

an important role in the regulation of pro-inflammatory genes. The study 

of metabolism through the lens of mitochondrial behaviour is also an 

important tool to understand how obesity and aging give rise to abnormal 

metabolite and ROS distribution. Collectively, future studies in these areas 

should yield clearer insights that may help clinicians negotiate the diverse 

individual responses to intervention. 

CONCLUSIONS 

In conclusion, the field of immunometabolism is gaining traction, but 

several gaps in our knowledge exist that require further study, especially 

in light of the rising trends of aging and obesity. With advanced 

technologies such as single-cell epigenetics, RNA-seq, metabolomics, and 

flow cytometry, researchers are equipped with the tools to identify the 

mechanisms underlying these processes at both the cellular and molecular 

level. The latter is critical for identifying specific risks for personalised 

medicine (Figure 1).  
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Figure 1. Illustration of the detrimental consequences of Aging and Obesity, the different facets of obesity, 

potential interventions, and research gaps in the field. Created with Biorender.com. 
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