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ABSTRACT 

Hematopoiesis is the process that leads to multiple leukocyte lineage 
generation within the bone marrow. This process is maintained through-
out life thanks to a nonstochastic division of hematopoietic stem cells 
(HSCs), where during each division, one daughter cell retains pluripotency 
while the other differentiates into a restricted multipotent progenitor 
(MPP) that converts into mature, committed circulating cell. This process 
is tightly regulated at the level of cellular metabolism and the shift from 
anaerobic glycolysis, typical of quiescent HSC, to oxidative metabolism 
fosters HSCs proliferation and commitment. Systemic and local factors 
influencing metabolism alter HSCs balance under pathological conditions, 
with chronic metabolic and inflammatory diseases driving HSCs 
commitment toward activated blood immune cell subsets. This is the case 
of atherosclerosis, where impaired systemic lipid metabolism affects HSCs 
epigenetics that reflects into increased differentiation toward activated 
circulating subsets. 

Aim of this review is to discuss the impact of lipids and lipoproteins on 
HSCs pathophysiology, with a focus on the molecular mechanisms 
influencing cellular metabolism. A better understanding of these aspects 
will shed light on innovative strategies to target atherosclerosis-associated 
inflammation. 
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marrow adipose tissue; TCA, tricarboxylic acid cycle; OXPHOS, oxidative 
phosphorylation; FAO, fatty acid oxidation; PPAR-δ, Peroxisome 
proliferator-activated receptor delta; LAL, lysosomal acid lipase; CMPs, 
common myeloid progenitors; GMPs, granulocyte/macrophage 
progenitors; LXR, liver-X receptor; ABCA1, ATP binding cassette A1; ABCG1, 
ATP binding cassette G1; ApoC, apolipoprotein C; BMAT, Bone Marrow 
Adipose Tissue; LPL, lipoprotein lipase; GM-CSF, granulocyte-macrophage 
colony-stimulating factor; SDF1, Stromal Derived Factor-1; Angptl4, 
angiopoietin-like 4; LPL, Lipoprotein Lipase; CCR2, C-C chemokine 
receptor type 2; MCP-1, monocyte chemoattractant protein-1; NLRP3, NOD-
Like Receptor Protein 3; S1P, Sphingosine-1-Phosphate; IL, Interleukin; 
TLR, Toll-Like Receptor; LPS, Lipopolysaccharide 

INTRODUCTION 

Atherosclerosis results from the deposit of cholesterol within the 
intima of the arterial wall, an event that promotes inflammation and 
immune cell recruitment in the vessels, thus promoting atherosclerotic 
plaque formation. Monocytes-derived macrophages and activated T cells 
are the most abundant infiltrated immune cells in human atherosclerotic 
plaques, especially in vulnerable and unstable plaques. Parallel to local 
immune activation, systemic changes in the number, proportion and 
function of immune cells have been reported in patients with both stable 
and acute atherosclerotic cardiovascular disease (ASCVD), thus 
strengthening the association between the disease and a systemic 
immuno-inflammatory response [1–6]. Besides, the results from recent 
clinical trials with anti-inflammatory therapies (CANTOS [7], COLCOT [8] 
and LoDoCo2 [9]) have contributed to demonstrate the causality of this 
association, suggesting that the activation of immune response is not 
merely a bystander of lipid overload, but instead is actively involved in 
disease progression. Furthermore, emerging evidences show that the pro-
inflammatory activation of immune cells occurs already at the level of 
hematopoietic precursors even in the bone marrow by mechanisms of 
functional priming (the so called “trained immunity”) and/or clonal 
hematopoiesis, that were shown to increase the risk of atherosclerotic 
cardiovascular disease [10,11]. This arises as the consequence of the 
connection between classical risk factors such as hypercholesterolemia or 
hyperglycemia and alterations in bone marrow cells 
characteristics/epigenetics which translate into sustained hematopoiesis 
and increased commitment toward activated immune subsets. This review 
aims at discussing the current knowledge on the metabolic adaptations 
occurring in hematopoietic cells during atherosclerosis and how this 
influences myeloid compartment homeostasis. A deeper understanding of 
these mechanisms will set the stage for testing possibilities to target 
cellular metabolism to reprogram both hematopoietic cells as well as 
immune cells as a strategy to improve atherosclerosis-associated 
inflammation. 
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PHYSIOLOGICAL REGULATION OF HEMATOPOIESIS  

Hematopoiesis is the physiological process by which a small pool of 
Hematopoietic Stem Cells (HSCs), characterized by self-renewal and 
pluripotency, produces the variety of red blood cells and immune-
competent leukocytes circulating within our blood. Hematopoiesis is 
maintained lifelong thanks to the asymmetric scheme of division rate, 
where one daughter cell remains an HSC and the other differentiates into 
a restricted progenitor with limited self-renewal capacity. From these 
progenitor cells, downstream precursors differentiate and proliferate in 
order to provide different lineages in a nonstochastic hierarchy (Figure 1).  

In humans, HSC are around 3000–10,000 per femur and their division 
rate is estimated between once every three months to once every year 
[12,13]. Therefore, a proportion of HSCs maintain a relatively constant 
phenotype of quiescence, while a small fraction differentiates towards 
multipotent progenitors (MPPs), which are characterized by massively 
increased differentiating potential and which will produce a nonstochastic 
proportion of downstream cellular products [14,15]. Single-cell RNA 
techniques recently highlighted that multiple MPPs exist which, despite all 
originating from a firstly committed MPP1 [16], develop an a priori 
engagement towards multiple lineage outputs (e.g., MPP2 specialize for 
development of the myeloid, erythroid and megakaryocyte lineages, while 
MPP3 evolve to lymphoid progenitors). This guarantees 4500 to 11,000 
circulating leukocytes per cubic millimeter (55–70% as neutrophils [17]) in 
physiological conditions and a massive increase in the number of 
circulating neutrophils and monocytes under inflamed conditions, 
including myocardial infarction (MI), in mice models [18,19] and humans 
[20]. This dynamic adaptation of the hematopoietic system provides an 
enormous amount of heterogeneous leukocyte subfractions and is driven 
by a storm of neurochemical mediators (β3 adrenergic system activation), 
cytokines (IL-1beta, IL-6, TNF-alpha, damage-associated molecular 
patterns, calprotectin S100A8/A9) and bone marrow mobilizers 
(Granulocytes-Monocytes Colony Stimulating Factor, GM-CSF; and Stromal 
Cell-Derived Factor 1, SDF-1). 

Beyond the acute response of the bone marrow compartment, it is 
emerging how HSCs long-term lifespan, their proliferative potential and 
the differentiation to downstream progenitors is affected also by long term 
exposure to cardio-metabolic risk factors, including hypercholesterolemia, 
hyperglycemia as well as daily and recurrent exposure to hypercaloric 
foods; this latter indeed, by promoting excessive increase of glucose and 
lipid levels after food intake, the so called “postprandial hyperlipemia”, is 
considered a cardio-metabolic and inflammatory condition independently 
associated with elevated cardiovascular risk [21–26]). 
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Figure 1. Hematopoiesis. (A) Hematopoietic, precursor cells and different cellular lineages in the bone 
marrow and in extra-medullary tissues (thymus and spleen) (cells and markers for mice are reported). 
“HSCs”- hematopoietic stem cell; “MPP”, Multipotent Progenitor Cell; “CMP”, Common Myeloid Progenitor; 
“GMP”, Granulocyte/Macrophage Progenitors; “CMoP”, Common monocyte progenitor; “MEP”, 
Megakaryocyte–Erythroid Progenitor; “EP”, Erythroid Progenitor; “MEP”, Megakaryocyte Progenitor; “Neu”, 
Neutrophil. The direction of light-blue arrows indicates the progression/proliferation towards the 
downstream immune cell. (B) Murine markers and key functions (in bold) for each immune cell subset. 
Markers are identified as: “neg” (negative, cell not expressing the marker); “low” (cell poorly expressing the 
marker); “+” positive (cell expressing the marker); “bright” cell highly-expressing the specific marker. 

ENVIRONMENTAL FACTORS INFLUENCING HEMATOPOIETIC CELL 
HOMEOSTASIS 

Within the bone marrow, HSCs reside in close contact to the vascular 
network. The majority of non-dividing quiescent HSCs are located in close 
proximity to the sinusoids and adhere to the endosteum (an area where 
oxygen tension is minimal, around 55 mmHg pO2 [27]), while 10–20% of 
HSCs are located near the arterioles (where the oxygen tension is equal to 
that of the bloodstream) [28–30]. Anatomically, the central artery (“arteria 
nutricia”) penetrates the bone marrow through the nutrient canal and 
divides into an ascending and descending branch; within the endosteal 
space, it extends as thin-walled arterioles and follows the long axis over 
the metaphysis where ends with a complex ramification at the epiphysis, 
including the medullary sinusoids, an important reticular network of 
fenestrated vessels over diaphysis and metaphysis (Figure 2). This 
structure connects the arterial structure to the venous sinusoids, which 
drain the cellular and molecular material into the central venous system 
towards the nutrient vein. As such the vascular network is fundamental in 
mediating the influx and efflux of the hematopoietic and non-
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hematopoietic cells from the circulation but also controls oxygen and 
nutrients availability to HSCs.  

  

Figure 2. Bone marrow vascular network and factors affecting hematopoiesis. Anatomical description 
of the principal medullary factors influencing the proliferation and commitment of quiescent HSC 
(“Hematopoietic Stem Cell”) in physiological (left) or in pathological conditions (right). Triangles on the left 
side of the picture indicate the relative abundance of factors affecting the quiescent to committed HSC 
transition. The magnified inset on the right side of each femur highlights the vascular interaction between 
the arterial and venous network at the level of the endosteal sinus under physiological and pathological 
conditions. 

HSCs, located in areas with a low oxygen tension (hypoxic regions), rely 
on the activation of hypoxia inducible Factor 1 alpha (HIF1-alpha) [31,32], 
the master transcriptional regulator of different genes encoding for 
glycolytic enzymes (LDHA, PKM2, GLUT1, PFKL and PDK2) [33], this, 
coupled to the availability of glucose, is crucial to support quiescent HSCs 
energy demand via anaerobic glycolysis. HIF1-alpha senses the reduced 
pO2 and, through the dimerization of the alpha and beta subunits, it favors 
the activity of the pyruvate dehydrogenase kinases (PDK) and, in turn, 
inactivates the pyruvate dehydrogenase. This is a key mechanism which 
limits TCA cycle flux and oxidative phosphorylation (OXPHOS). This 
activity of HIF1-alpha decreases in HSCs located in more oxygenated 
medullary areas and this promotes the cellular metabolic shifts from 
anaerobic glycolysis to mitochondrial oxidative metabolism and supports 
the differentiation towards downstream effectors [34].  

Limiting oxidative metabolism minimizes the possibility to generate 
radical oxygen species (ROS) and DNA damage, this aspect becomes 
relevant over lifespan, as HSCs becomes less efficient to scan for and 
repair damages of the genomic heritage. This appears to be relevant when 
somatic mutations occur in specific loci such as the epigenetic regulators 
TET2 (ten-eleven translocation 2), DNMT3 (DNA nucleotide 
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methyltransferase 3A), or ASXL1 (the addition of sex combs like 1) as they 
favor the selection and expansion of a pool of HSCs with a competitive 
advantage during hematopoiesis over the rest of the other stem/progenitor 
cells [35]. This process, which is called clonal hematopoiesis of 
indeterminate potential (CHIP), has been significantly associated with 
elevated atherosclerotic burden in experimental models of 
hypercholesterolemia and atherosclerosis [10,36]. In this experimental 
setting, TET2 deficiency profoundly changed the transcriptome of myeloid 
cells and bone marrow derived macrophages, which displayed an 
enrichment in RNA classes coding for cytokines/chemokines receptors, 
coupled to the reduction of genes involved in lysosomal function. 
Atheroprone mice receiving TET2 deficient bone marrow under high 
fat/high cholesterol diet, presented atherosclerotic plaque enriched in pro-
inflammatory macrophages [37]. Of note, a cluster of variants in CHIP-
associated loci were associated with increased risk of coronary artery 
disease in different cohorts [10].  

Another key factor that is emerging as a critical contributor to HSC 
physiology is the amount of adipose tissue that accumulate in the bone 
marrow (BMAT) [38,39]. HSC number inversely correlates with the 
amount of adipocytes resident in the parenchymal structure of bones and, 
over lifespan, hematopoietic red bone marrow is replaced by fatty yellow 
marrow with HSCs being less efficient to differentiate into downstream 
precursors cells [40]. Recently it has been shown that lipid droplets 
budding from BMAT interact with phagocytes around sinusoids and 
support the maturation of erythroblasts, myeloid cells and, to a lesser 
extent, granulocytes [41].  

In addition, also metabolites generated from the processing of highly-
caloric nutrients by the microbiota, contribute to hematopoiesis. Different 
gut microbiota derived metabolites have been shown to impact HSCs 
commitment [42] and to determine circadian replenishment of the 
patrolling pool of phagocytes and neutrophils in peripheral tissues [43]. 
Selective gut microbiota species orchestrate myeloid and granulocytic 
hierarchal clustering by producing specific fatty acids [42] (e.g., butyrate 
[44]). This process is promoted by the production of phospholipids from 
multiple dietary sources or substrates which are oxidized in the liver and, 
in response to inflammatory conditions, foster myeloid commitment. This 
is the case for trimethylamine N-oxide (TMAO), which originates from the 
metabolism of intestinally absorbed choline and L-carnitine and has been 
associated to both atherogenesis [45,46] and to increased circulating 
myeloid cell levels[47]. 

Therefore, changes in environmental conditions and nutrients supply 
affect hematopoietic niches homeostasis and thus modulate HSC plasticity 
including their inflow in the bloodstream as well as their functional 
commitment. These processes rely on the reprograming of cellular 
metabolism which shift from that of quiescent and poorly energy-
demanding HSC towards a more energy-demanding proliferative 
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phenotype (Figure 3). Only recently we have started appreciating the cross 
talk between nutrients supply and cellular utilization, suggesting that a 
deeper knowledge in this field is crucial to identify key metabolic 
checkpoints that could be targeted to promote HSCs immune-metabolic 
reprogramming during atherosclerosis and cardiovascular diseases. 

 

Figure 3. Impact of systemic and cellular lipid metabolism on HSCs commitment in atherosclerosis. 
Main cellular immune-metabolic circuits involved in HSC commitment during atherogenesis. Cellular 
pathways with enhanced expression/activity are indicated with bold arrows while those down-regulation 
or with reduced activity are represented with thin arrows. “Gly”, Glycolysis; “TCA”, (Tricarboxylic Acid 
Cycle); “FAO”, Fatty Acids Oxygenation; “ATP”, Adenosine Tri-Phosphate; “GLUT-1”, Glucose Transporte-1 
isoform; “HIF1-alpha”, Hypoxia Inducible Factor 1 alpha; “PDK”, Pyruvate Dehydrogenase Kinase; “PPAR-δ”, 
Peroxisome proliferator-activated receptor delta; “ROS”, Reactive Oxygen Radical species; “ER”, 
Endoplasmic Reticulum; “PL” Phospholipids; “Cer”,Ceramids; “LAL”, Lysosomial Acid Lipase; “CE”, 
Cholesterol Esters; “LXR”, Liver-X-Receptors”; “NLRP3”, NOD-Like Receptor-3; “SREBP”, Sterol regulatory 
element-binding proteins; “GM-CSF”, granulocyte-macrophage colony-stimulating factor; “TET2”, ten-eleven 
translocation 2; “CHIP”, clonal haematopoiesis of indeterminate potential; “LDL-R”, Low-Density 
Lipoproteins Receptor; “ApoE”, Apolipoprotein E; “ABCG/A”, ATP-Binding Cassette transporter G/A isoforms; 
“LPL”, Lipoprotein Lipase; “FAs” Fatty Acids; “BMAT”, Bone Marrow Adipose Tissue; “Angptl4”, Angiopoietin 
Like 4 protein. 

CELLULAR ENERGETIC CIRCUITS INVOLVED IN HEMATOPOIETIC 
CELL COMMITMENT IN INFLAMMATORY CONDITIONS 

HSC mobilization to more oxygenated areas during their 
differentiation is associated with cellular metabolism rewiring and 
increased OXPHOS activity. The preferential oxidation of FA (FAO) 
improves hematopoietic specification by acetyl-CoA-dependent histone 
modifications [48] and also increases mitochondrial remodelling that 
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supports the asymmetric division of HSCs. The availability of FAs is related 
to the hydrolysis of glycerolipids and triacylglycerols (TG) stored in the 
BMAT and, at the molecular level, promotes the activation of the 
promyelocytic leukemia (PML)–peroxisome proliferator-activated 
receptor δ (PPAR-δ)–fatty-acid oxidation (FAO) axis [49]. Although the use 
of FAO more likely provides higher energetic yield (as the oxidation of one 
palmitate molecule generates 129 ATP molecules) [50], an excessive 
engagement of this process promotes ROS production, oxidative stress 
response [49] and the selective degradation of mitochondria (mitophagy) 
[51].  

Elevated availability of saturated FAs in the HSCs dampens the activity 
of autophagy related 5 (Atg5), a key protein involved in the extension of 
the phagophoric membrane in autophagic vesicles, and this results into 
reduced cellular mitochondrial cellular mass of hematopoietic cells 
committed to become lymphocytes, in favor of a preferential expansion of 
the myeloid compartment. Also, Atg5 repression in myeloid lineage 
aggravates atherosclerosis and negatively impact on the inflammatory 
composition of atherosclerotic lesions in mice fed on diet enriched in 
polyunsaturated fats (PUFAs) [52], lipid dietary sources that favors the 
activity of macrophage autophagy [53]. Accordingly, myeloid skewing of 
hematopoietic cells appears proportional to the quantity of white adipose 
tissue volume in the mid-shaft of the bones [54,55]. Still whether BMAT, 
whose increased volume correlates with extent of aortic atherosclerotic 
calcification and predicts occurrence of atherosclerotic cardiovascular 
events independently from risk factors [56], acts as site of energy storage 
to support bone marrow function and maturation towards myeloid 
subsets, or negatively regulate HSCs mobilization is heavily investigated. 

Additional mechanisms support hematopoietic differentiation under 
inflamed and atherosclerosis related conditions. Excessive glucose uptake 
support HSCs inflammatory skewing, and indeed glucose transporter 
(Glut1) deficiency in bone marrow cells limits excessive myelopoiesis and 
accelerated atherosclerosis in experimental models [57]. Besides to 
provide faster ATP replenishment, the switch to aerobic consumption of 
glucose coincides with the accumulation of TCA metabolites, that could 
restrain the hematopoietic pluripotency instead of being used as energetic 
substrates [58]. This effect seems to depend on the action of ATP citrate 
lyase (ACLY), that by converting mitochondrial citrate to Acetyl-CoA, seizes 
Acetyl-CoA from the TCA cycle diverting the molecule to histone 
acetylation and cholesterol synthesis [59]. Similar epigenetic mechanisms 
have been described for TCA’s derived alpha-ketoglutarate [60] further 
confirming the dependency between energetic setting and epigenetic 
profile. This control extends also to checkpoints of cellular metabolism, as 
the AMP-activated protein kinase (AMPK), that phosphorylates and 
stabilizes TET2. Vice versa, this ability is blunted under insulin resistance 
and diabetes, where AMPK activity is reduced [61], thus leading to clonal 
HSCs expansion and elevated risk of atherosclerotic diseases [13].  
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It is worth to speculate whether these epigenetic adaptations, such as 
histone modifications [62], could persist even in differentiated cells, thus 
affecting atherosclerosis progression by forcing prolonged differentiation 
over time into more aggressive immune cells [63]. This “epigenetic trained 
phenotype” has been confirmed in vivo, since bone marrow-derived 
myeloid cells collected from mice fed to high-cholesterol diet persistently 
maintain the augmented activated immune-inflammatory potential when 
transplanted in mice fed to standard diet. In line with this, the reported 
ACLY hyper-activation in human atherosclerotic plaque could be the result 
of hematopoietic imprinting and indeed its specific deficiency in the 
myeloid lineage (LysM positive cells) stabilizes atherosclerotic plaque 
progression while its activation increases the transcription of LPS-induced 
gene expression in cultured macrophages. In addition, also a “leaky-gut” 
enhances the absorption of inflammatory metabolites produced by the 
microbiota (e.g., LPS) which were shown to promote epigenetic 
adaptations on the myeloid lineage [64], to foster the proliferation of pro-
inflammatory monocytes (in mice as Ly6Chigh and in humans as 
CD14+/C16++) and to induce atherothrombosis through TLR4-mediated 
neutrophilic cathepsin G activation [65]. Of note this phenotype is also 
associated to the activation of NLRP3, a component of the inflammasome 
that triggers inflammatory response by promoting IL-1β release [66] and 
fuels myeloid hyperactivity in atherosclerosis [67,68]. Indeed, TLR4 
inhibition dampens NRPL3 priming and reverts the pro-inflammatory 
phenotype of neutrophils [65]. Similarly, inhibition of NRPL3 
inflammasome by beta-glucan exposure of LPS-treated bone marrow 
derived macrophages derails their inflammatory phenotype induced by 
epigenetic modifications, including accumulation of active histone marks 
at promoter and enhancers of genes in the lipid metabolism and 
phagocytic pathways [64]. Together these evidences surmise the appealing 
possibility that the hyperactivation of the NLRP3 pathway, an 
evolutionary-conserved tool for the adaptation of the hematopoietic 
system and the myeloid compartment of the host organism facing 
environmental stimuli, might represent not only a target for therapeutic 
strategies (e.g., past experiences of the CANTOS trial), but also a tool for 
personalized cardiovascular risk stratification [68]. 

Therefore, cellular metabolic plasticity drives the fate of the 
hematopoietic tree, in response to the environmental settings and to the 
availability of energetic supplies. While oxidation of FA is physiologically 
required for hematopoietic specification in physiology, the oxidative 
metabolism consequent to either abundant lipids availability or increased 
glycolytic flux contribute to HSC commitment. The exacerbation of the 
latter process co-opts the multipotent downstream progenitors toward 
myeloid compartment, which will be more likely prompt to support the 
inflammatory response associated to atherosclerosis. 
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IMPACT OF INTRACELLULAR LIPID SYNTHESIS AND 
EXTRACELLULAR LIPID UPTAKE ON HEMATOPOIETIC CELL 
COMMITMENT DURING ATHEROSCLEROSIS 

Lipids are crucial for both HSC self-renewal as well as HSC asymmetric 
differentiation and commitment not only as fuel but also as 
macromolecules for building new membranes (such as is the case for 
cholesterol and FA) [41]. Intriguingly, both lipid synthesis and lipid uptake 
pathways are activated in HSC and become overactivated during 
inflammatory conditions including atherosclerosis [69]. The reason why 
both processes are activated and whether they are redundant or not for 
HSCs commitment during atherosclerosis is still debated.  

Key extracellular receptors responding to signals devoted to control 
HSCs proliferation and commitment are located in lipid rafts, cholesterol 
enriched area in the membrane. Alterations in the mechanisms 
controlling cholesterol availability in lipids rafts have been associated 
with a profound impact on HSCs physiology. The deficiency of 
apolipoprotein E (ApoE), which works as an acceptor for cellular 
cholesterol, impairs cholesterol efflux, resulting in the enrichment of 
cholesterol in lipid rafts [70]. This translates in an increased distribution 
of GM-CSF receptors in these regions, leading to increased response 
toward GM-CSF and therefore increased myelopoiesis [25,70]. A similar 
phenotype is observed, also when cholesterol transporters involved in 
cholesterol efflux are absent leading to intracellular accumulation of free 
cholesterol; this is the case of ApoE, ABCA1 and ABCG1, which are sensitive 
to LXR, and whose deficiency enhances the sensitivity of key receptors for 
myeloid promoting growth factor (that is the IL3/GM-CSF signaling), it 
promotes the commitment (via phosphorylation of Extracellular Signal-
Regulated Kinases (ERK1/2) and Signal Transducers and Activator of 
transcription 5 (STAT5) and it increases circulating inflammatory cells and 
atherosclerosis [70,71]. Of note membrane receptors hyper-
responsiveness is also conserved and shared by other myeloid-derived 
cells, such as the case of dendritic cells from apoE deficient mice which 
present increased MHC-II membrane clustering and activity [72]. 

While reduced lipoprotein uptake related to LDL-R deficiency is 
associated with a lower proportion of hematopoietic precursors resident 
in the bone marrow together with a more pronounced shortening of 
telomere length (TL), cholesterol accumulation impacts HSCs commitment. 
Indeed, the deficiency of Lysosomal Acid Lipase (LAL), the key enzyme 
which processes lipoproteins to cleave esterified cholesterol but also TGs 
to generate free cholesterol and FAs [73], results in cholesterol 
accumulation in the lysosome and abnormal number of HSCs, CMPS and 
GMPs, with enhanced capacity to form colonies within the niches and 
displaying reduced expression of apoptotic and checkpoints proteins [74]. 
In experimental models, LAL deficiency results into elevated circulating 
myeloid subsets, with elevated infiltrating capacity into inflamed tissues 
and improved ability to suppress lymphoid T cells proliferation [74]. These 

Immunometabolism. 2021;3(2):e210014. https://doi.org/10.20900/immunometab20210014 

https://doi.org/10.20900/immunometab20210014


 
Immunometabolism 11 of 20 

observations have been paralleled by the association of a number of cases 
of complete LAL deficiency (Wolman disease) to secondary 
hemophagocytic lymphohistiocytosis diagnosis, a pathological condition 
characterized by splenomegaly, elevated inflammatory markers 
(especially ferritin), in the absence of infection, and characteristic 
accumulation of foamy macrophages [75–78]. 

The inhibition of intracellular cholesterol synthesis by statins affects 
the epigenetic reprogramming and the hyperactivation of myeloid 
progenitors probably by interfering with lipid rafts abundance. Despite 
this observation, in the clinical setting, when patients were treated for 
three months with statins, no differences in precursors activation and 
trained immunity phenotype were observed [79]. This finding questions 
the possibility of repurposing metabolic drugs to target HSCs as their 
pharmacokinetics will largely influence the ability to reach specific tissues 
and cells. In vivo, the lack of statins efficacy could be explained either by 
the possibility that the inhibition of cholesterol biosynthesis in HSCs is 
counterbalanced by increased LDL-R expression and lipoprotein uptake, 
and/or by the fact that acute drop in cholesterol plasma levels would 
overcome the “priming effect” induce by long-term hypercholesterolemia. 

Beyond their role as fuel for FAO, fatty acid metabolism shapes 
hematopoietic cells function as well. In fact, deficiency of Lipoprotein 
Lipase (LPL), that catalyses the hydrolysis of the triacylglycerol component 
of circulating chylomicrons and very low-density lipoproteins thereby 
providing free fatty acids to the cells, results in reduced expression of GM‐
CSF from macrophages and reduced myelopoiesis [80,81]. Likewise, the 
deficiency of Angiopoietin-like 4 (Angptl4), a constitutional LPL inhibitor, 
in HSCs promotes the expansion of the myeloid compartment under 
inflammatory conditions, paralleled by increased CD36 expression and 
reduced ABCG1 expression on macrophages [82,83]. This effect extends the 
formation of inflamed atherosclerotic lesions in mice fed on high fat diet 
[83]. Similarly, a microRNA-based approach, knocking-down (PPAR)‐δ, 
reduces the transcription of Angptl4 and attenuates systemic 
inflammation, reduced the expression of CCR2 in monocytes, the 
expression of Monocyte Chemoattractant Protein-1 (MCP-1) and IL-1β in 
atheroma-resident macrophages and promoted the regression of 
atherosclerotic lesions in mice [84].  

In addition, FAs act as building blocks for several macromolecules, 
including sphingolipids and phospholipids, which participate in HSC 
engagement and mobilization during atherosclerosis (Figure 3). 
Sphingolipids, for example, promote the activity of several transcription 
factors (PU.1, GATA1 and GATA2), leading to the reprogram of erythroid-
primed MPPs towards the myeloid lineage under inflammatory conditions 
[85]. This effect is abrogated by Sphingosine-1-Phosphate (S1P); S1P itself 
demonstrated important role in the mobilization of HSC and their homing 
in peripheral sites (including spleen) [86,87]. Also, mice with elevated 
circulating S1P levels due to the genetic deletion of sphingosine kinase 2 
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(SphK2) [88] on an LDLR Knock-Out (KO) atherogenic background, showed 
reduced vascular endothelial monolayer permeability to LDL and 
monocytes recruitment within the plaque [89]. Moreover, phospholipids 
promote HSCs self-renewal and retention in the niche through 
cyclooxygenase (COX) dependent Prostaglandin E2 (PGE2) [90]) or 
lipoxygenases (LOX) dependent hydroxyeicosatetraenoic acid (HETE) 
production [91].  

All together these evidences demonstrate the intimate connection 
between intracellular lipid metabolic reprogramming and hematopoietic 
cell fitness. Conditions that affect lipid homeostasis both at the systemic 
and cellular level might impact the proliferative and differentiating 
potential of hematopoietic cells, thus leading to changes in the flux from 
the bone marrow to the circulation of hyper-responsive committed cells 
that in turn might influence the progression of inflammatory-based 
disease, as in the case of atherosclerosis. 

CONCLUSIONS 

Atherosclerosis results from unbalanced lipid metabolism coupled to 
inflammation. While lipid lowering therapy represents the pillar for 
decreasing circulating LDL-C levels, novel strategy should aim to improve 
the immunoinflammatory response. A general anti-inflammatory 
approach has been shown to improve cardiovascular outcome but also to 
affect general immune response toward infections. This implies that more 
tailored approaches are needed to target immune cells in the context of 
atherosclerosis. While lipid-lowering agents have demonstrated to possess 
several immunometabolic function in vitro, whether these drugs could 
reach a reasonable concentration to target immune cell without systemic 
side effects in vivo is debated.  

In parallel, the identification of metabolic “checkpoints” that couple the 
reprogram of energetic machinery with immune cell functionality may 
offer innovative ways to target the inflammatory response associated to 
atherosclerosis. This is the case of (i) ACLY inhibition that by, reducing the 
acetyl-CoA pool required for histone acetylation, affects macrophage 
epigenetic program thus regulating TLR-driven gene expression after LPS 
stimulation [92,93]; (ii) LAL activity induction to boost the anti-
inflammatory potential of macrophages [94]; (iii) PPAR-δ antagonism that 
reduces macrophage IL-1β expression [95]. At the same time, the novel 
understanding of immune-metabolic crosstalk in HSCs could contribute to 
depict collateral effects of developing lipid-lowering therapies, as the 
recent application of Angptl4 inhibitors for the treatment of 
hypertriglyceridemia that, despite promising, could bear activation of LPL 
in macrophages thus promoting their inflammatory activation [84]. 

The growing interest in HSCs biology has proposed that most of the 
above described immunometabolic events could be the result of metabolic 
and functional plasticity of precursor cells in the bone marrow. However, 
as the process of trained immunity can teach, targeting HSC commitment 
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could be a double-edged sword. In fact, while priming of immune cell 
progenitors could be beneficial in diseases, where a boost of immune 
response is required to counteract a tolerogenic response (e.g. in cancer), 
it could vice versa be detrimental in cardiovascular diseases, where 
excessive inflammation contributes to disease progression. In this view, 
the expanding knowledge of metabolic and molecular circuits adopted by 
HSCs would offer innovative pharmacological target to control the 
activation of mature immune cells in the context of cardiovascular 
diseases. 
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