
 cbgg.hapres.com 

Crop Breed Genet Genom. 2020;2(4):e200018. https://doi.org/10.20900/cbgg20200018 

Article 

Genotype by Environment Effects on Durum 
Wheat Quality and Yield-Implications for 
Breeding 
Mike Sissons 1,*, Gururaj Kadkol 1, Julian Taylor 2 

1 Tamworth Agricultural Institute, NSW Department of Primary Industries, 
Tamworth NSW 2340, Australia 

2 School of Agriculture Food and Wine, University of Adelaide, Adelaide SA 
5005, Australia 

* Correspondence: Mike Sissons, Email: mike.sissons@dpi.nsw.gov.au;  
Tel.: +61-400764265. 

ABSTRACT 

The main focus of a durum breeding program is to create high yielding, 
adapted durum wheat varieties that meet grain quality standards. Using 
modern statistical approaches we show how comprehensive data sets can 
be used to readily identify high performing and stable genotypes. A subset 
of 12 durum wheat genotypes were selected from breeding trials grown in 
five different locations in New South Wales, Australia, over three seasons 
constituting 15 dryland environments. Grain yield and quality traits were 
determined and for a subset of six genotypes, pasta quality traits were 
assessed. For non-pasta traits and yield, genotype, year, location and their 
interactions were statistically significant. Plots of overall performance 
versus stability allowed identification of the best genotypes for each trait 
with clear improvements noted in the more recent breeding material 
compared to older varieties. This analysis indicated high heritability for 
traits such as colour, dough strength, yield and milling potential. Using this 
approach, breeders can easily identify high performing genotypes for 
release or as parents in crossing. 
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ABBREVIATIONS 

G × E, genotype by environment; GY, grain yield; TW, test weight; TGW, 
1000 kernel weight; HVK, hard vitreous kernels; GP, grain protein; SKHI, 
single kernel hardness index; MY, total mill extraction; SY, semolina mill 
extraction (break + semolina); Semo, semolina only extraction; L*, 
brightness; a*, redness; b*, yellowness; WI, whiteness index; BI, browning 
index; MPT, mixograph peak dough development time; RBD, mixograph 
resistance breakdown; WG, wet gluten; GI, gluten index; OCT, pasta 
optimum cooking time; DPL, uncooked pasta brightness; DPa, uncooked 
pasta redness; DPb, uncooked pasta yellowness; DPWI, uncooked pasta 
whiteness; CPL, cooked pasta brightness; CPa, cooked pasta redness; CPb, 
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cooked pasta yellowness; CPWI, cooked pasta whiteness; CSTAB, cooked 
pasta colour stability; CL, Cooking loss; WABS, pasta water absorption; 
Firmness, Firmness peak height; SPH, stickiness peak height; SArea1, 
stickiness peak area; ME-LMM, multi-environment linear mixed model; 
BLUEs, best linear unbiased estimates; FAST, Factor Analytic Selection 
Tools 

INTRODUCTION 

Durum wheat (Triticum durum Desf.) is an important crop for the 
human diet and while durum wheat only accounts for 5–8% of world 
wheat production, it is important in producing a range of food products, 
such as semolina, pasta, burghul wheat, couscous and desserts unique to 
durum [1]. The main durum-growing regions are the Middle East, 
Southern Europe, North Africa, the former Soviet Union, North America, 
Mexico, India and some minor but important production areas like 
Argentina and Australia [2]. Most of the durum wheat is grown under 
rainfed conditions in semiarid regions, typically characterised by 
unpredictable and highly variable seasonal rainfall impacting on yield 
and quality stability [3]. In the Australian environment, most durum 
wheat is grown in north eastern New South Wales and South Australia and 
these regions represent variable soil and climatic conditions. This is 
particularly during the grain filling period, where water and nitrogen 
variability and heat stress can occur and collectively these may improve 
or deteriorate durum wheat processing quality [4,5]. Obtaining genetic 
increases in grain yield and quality to meet market requirements is a 
challenge in a highly variable environment like Australia. This results in 
slow genetic advance in breeding because genetic variation in yield and 
quality is influenced by genotype x environment (location/year) and their 
interaction and this is managed in breeding by conducting field trials in 
replicated plots in multiple locations representative of the main 
production zones. The idea is to build “a picture” of a genotypes 
performance against reference varieties over multiple seasons that allows 
the breeder to select desirable genotypes for improvements in one or more 
characters associated with yield, quality, adaptation or disease resistance 
considered necessary in new varieties for release.  

It is important to determine the effects of genotype (G), environment 
(E) and their interaction (G × E), i.e., variation in genotype response under 
different environmental conditions on durum wheat quality under 
rainfed conditions but this has never been reported in the Australian 
environment although one study has reported these effects for irrigated 
durum wheat [5]. Several G × E studies have been reported in rainfed 
environments for durum wheat yield in other countries with fewer studies 
covering durum quality [3,6–11]. Genotype-environment interactions are 
important in evaluating cultivar adaptation, selecting parents and 
developing improved genotypes. If the ranking of genotypes differs 
between environments this makes it more difficult to identify superior 
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breeding genotypes since the measured trait values are affected more by 
environmental variation than genetic differences. If G × E is large, then 
testing in multiple environments is required to assess cultivar 
performance accurately. An ideal stable genotype is one that performs for 
agronomic and quality across a wide range of environments showing good 
performance regardless of variation in environmental conditions. Such 
varieties are more acceptable in the market because they provide more 
processing stability in milling and pasta making [8]. Quality traits that are 
less affected by E and more by G make genetic gain more effective. 
Identifying such quality traits is important in the context of the Australian 
environment and genotypes grown in order to advance through breeding.  

Historically, G × E analyses of multi-environment data was undertaken 
using simple regression approaches [12,13]. There has also been a strong 
focus on using extensions of analysis of variance through additive main 
and multiplicative interaction (AMMI) approaches [14,15]. Unfortunately, 
these methods lack flexibility for more complex unbalanced multi-
environment data where multiple sources of heterogeneous non-genetic 
variation are potentially present in individual environments [16,17]. More 
flexible modern G × E analysis approaches are available through the 
adoption of highly structured multi-environment linear mixed models 
[18]. In particular, Smith et al. [18,19] justify the use of a Factor Analytic 
model to parsimoniously model the G × E interaction effects. These models 
can then provide a basis for conducting variety stability analysis through 
approaches such as Factor Analytic Selection Tools (FAST) [20]. 

Our objectives were to (i) understand G, E and G × E in the northern 
Australian environment for durum wheat yield and quality (ii) to use that 
knowledge as a platform for future selection for quality traits and design 
more effective selection strategies.  

MATERIALS AND METHODS 

Plant Material 

The multi-trial data consisted of four registered durum wheat varieties 
(EGA Bellaroi, Caparoi, Hyperno and Jandaroi) and eight advanced 
experimental genotypes, three of which have recently been commercially 
released: DBA Aurora, released in 2014, DBA Lillaroi released in 2015 and 
DBA Vittaroi released in 2017 (Table 1). These genotypes were a subset 
from the larger advanced stage four trials conducted by the Northern 
Program of Durum Breeding Australia (a joint project between New South 
Wales Department of Primary Industry, The University of Adelaide and 
the Grains Research and Development Corporation). The yield data were 
analysed for the entire trials. Quality data were generated only for the 
above selected genotypes because of the resources needed to analyse all 
the genotypes in the trials. The 2013 trial at Edgeroi was not included in 
the analysis of grain yield (but was for quality traits) because of uneven 
germination and establishment due to poor soil moisture at planting.  
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Table 1. Pedigree, origin and maturity of durum genotypes included in the study. 

Genotype Pedigree Year of release Days to 50% heading 

240578 960707/980947 Breeding line 126 
280012 200325/200468 Breeding line 126 
280115 200325/200468 Breeding line 126 
290491 230616/230800 Breeding line 126 
290564 230616/230800 Breeding line 127 
DBA Lillaroi 960273/980596 2015 125 
DBA Vittaroi 200856/980990 2017 126 
Caparoi LY2.6.3/930054 2008 128 
EGA Bellaroi 69778/870015//SRN/SULA 2003 127 
Jandaroi (Souri/Wollaroi)/Kronos 2007 123 

DBA Aurora 
Tamaroi*2/Kalka//RH920318/Kalka 
///Kalka*2/Tamaroi 

2014 127 

Hyperno Kalka “S”/Tamaroi 2009 126 

Agronomic Details 

Field trials were conducted at 5 locations in New South Wales, 
Australia (Table 2) over 3 seasons (2012, 2013 and 2015) with each trial 
randomised as row column designs using DiGGer [21] with three 
replicates. We avoided 2014 because several sites suffered weather 
conditions that led to poor grain vitreous levels which can interfere with 
some quality traits. These types of studies need to be representative of the 
long-term average for the environments chosen in evaluating the 
usefulness of G × E studies. A constant limitation to all G × E studies of 
quality traits is the cost and may explain why most studies are for an 
average of 2.5 ± 1.8 years [22].  

The trials were planted with plot lengths of 10 m or 8 m (the plot 
lengths varied to suit the controlled traffic set up of the grower co-
operators). The plots were trimmed by 1m on each end and the actual plot 
length was measured at maturity to calculate yield in t/ha. Details of the 
soil type, pH and applied nitrogen is given in Table 2. Starane (Fluroxypyr) 
or Tordon 242 (MCPA + Picloram), both Group I herbicides, were applied 
to control broadleaf weeds prior to growth stage 30. N management 
consisted of determining the deficit between available soil N and the 
amount needed to achieve an average grain yield at 13% grain protein. 
Fertilisers consisted of urea and Granulock Z15 (Incitec Pivot, Southbank, 
Australia) applied at sowing. The latter was applied at 50 kg/ha which 
provided 5.5 kg N, 10.9 kg P, 2 kg S and 0.5 kg Zn.  
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Table 2. Details of trial sites, agronomic data and sowing dates. 

Location Year 
Trial sites 

Breeza Edgeroi Narrabri Moree Tulloona North Star Tamworth 
Latitude   31.25 °S 30.11 °S 30.34 °S 29.46 °S 30.33 °S 28.93 °S 31.09 °S 
Longitude   150.46 °E 149.79 °E 149.76 °E 149.8 °E 149.78 °E 150.39 °E 150.93 °E 
Altitude (m)   295 243 212 212 212 419 404 
Soil Classification   Grey cracking 

clay 
Grey cracking 
clay 

Grey cracking 
clay 

Grey cracking 
clay 

Grey cracking 
clay 

Variable Variable 

pH (CaCl2) 2012 nd nd nd nd nd  nd nd 
2013 8.1 7.4 nd 7.0 nd 7.6 7.7 
2015 8.0 8.0 7.1 7.8 7.8 7.4 7.2 

Total applied N 
(kg/ha) 

2012 A 47.25 47.25   47.25   47.25 47.25 

2013 241 52   60  56 67 

2015 33 5.5 5.5 5.5 106 16 9 

Sowing dates 2012 23/05/2012 17/05/2012   16/05/2012   15/05/2012 25/05/2012 

2013 21/05/2013 10/05/2013   9/05/2013   7/05/2013 27/05/2013 

2015 8/05/2015 29/06/2015 21/05/2015   23/05/2015 13/05/2015 8/06/2015 
A = no N management; nd = no data available.  
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Technological Tests 

Following harvest, grain analyses were performed on 
cleaned samples (Carter Dockage Tester, Simon-Carter 
Company, Minneapolis, USA). The following quality traits 
were evaluated with details described previously [5].  

Grain tests 

Test weight (TW) is a measure of grain density and how 
well the grain packs into a given volume with values of 76 
kg/hL or higher desirable. The weight of 1000 kernels (TGW) 
is an indicator of grain size and a rough predictor of milling 
performance and is related to TW. The percentage of hard 
vitreous kernels (HVK) was determined using a farinator to 
cut 6 sets of 50 kernels, taking an image with a smart phone 
and examining the image on a PC. Scoring for vitreous and 
non-vitreous was performed visually by a trained operator, to 
provide consistency in the arbitrary measurement. Vitreous 
grains appear translucent, while starchy grains appear 
opaque with small white spots of varying size (piebald) or 
completely white. Single kernel hardness index (SKHI), or 
grain hardness was measured using NIR with a calibration 
developed from the single-kernel characterisation system 
[23]. Grain protein and moisture were measured using in-
house calibrations on an NIRSystems model 6500 
spectrophotometer (Foss NIRSystems Inc., Laurel, MD, USA) as 
outlined previously [23].  

Semolina tests 

Grain was milled into semolina by tempering the grains 
for 18 h to 15.0% moisture and milled in an experimental mill 
(model MLU 202; Buhler, Uzwill, Switzerland) equipped with 
three break rolls and two reduction rolls [24] (Approved 
Method 26-41). Three traits were measured: If TPW = total 
products weight (bran, pollard, break, reduction and semolina 
fractions) then total mill extraction % (MY = total flour 
weight/TPW × 100); semolina mill extraction % (SY = semolina 
weight (three break fractions + semolina)/TPW × 100); 
semolina only extraction (SO = semolina weight/TPW × 100), 
so differs from SY in not having the three break fractions 
included. Semolina colour was evaluated by measuring L* 
(brightness, 100 = white, 0 = black), a* (+ve is redness. −ve is 
greenness), b* (+ve is yellow, −ve is blue), and whiteness index 
(WI) traits by means of a Minolta Chroma Meter CR-410 
(Biolab Australia, Sydney) in triplicate. A browning index (BI) 
is also measured where BI = 100 − L*.  
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Dough tests 

Dough quality was measured using two methods, 
mixograph and gluten index because there is no single best 
estimate of dough properties of durum [25]. Mixograph 
(duplicate determination per sample) was conducted with a 
10-g mixograph (National Manufacturing Co., Lincoln, NE, 
USA). MixSmart software supplied with the mixograph was 
used to determine mixograph peak dough development time 
(MPT) and resistance breakdown (RBD) defined as: 100 × 
((width of the curve at peak mixing time (WAP) minus width 
of the curve after 8 min mixing, (W8)/WAP). Gluten index (GI) 
was assessed on semolina samples [24] according to AACC 
Approved Method 38-12 using a Glutomatic 2200 (Perten 
Instruments, Huddinge, Sweden). GI was expressed as the 
ratio of the wet gluten (WG) remaining on the sieve after 
centrifugation to the total wet gluten weight.  

Pasta tests 

To obtain sufficient semolina to make pasta on a 1 kg scale, 
we pooled field replicate samples. Semolina was purified on a 
locally made, small-scale purifier and this was used to prepare 
long pasta (spaghetti) with a Namad pasta extruder which was 
then dried at 50 °C for 13 h and cooled to 25 °C under 
controlled humidity conditions [5]. All pasta samples were 
cooked to their optimum cooking time (OCT), which is the time 
taken for the pasta starch central core to disappear. Then 
texture testing was performed on cooked pasta which was 
assessed for firmness peak height and area (F-Area) and 
stickiness as peak height (SPH) and two areas under the curve 
(SArea1). In addition, water absorption (WABS) and cooking 
loss (CL), were measured as described previously [5]. 
Uncooked spaghetti colour was measured on the HunterLab 
scale for L*, a*, b* and whiteness index (WI) in triplicate using 
a Minolta camera CR-410 (Konica Minolta Sensing Inc. Osaka, 
Japan). Cooked pasta colour was measured on optimally 
cooked pasta. Colour stability was determined as described 
previously [5].  

Statistical Analyses 

Multi-environment linear mixed model 

Each of the pasta and non-pasta traits was initially 
analysed using a multi-environment linear mixed model (ME-
LMM) that partitioned and accounted for all sources of genetic 
and non-genetic sources of variation. Let 𝒚 = (𝒚1

𝑇 … 𝒚𝑡
𝑇)𝑇 be the 
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vector of observed responses across 𝑡  environments 
(Locations × Years), then the LMM had the form  

𝒚 = 𝑿𝝉 + 𝒁𝑒𝒖𝑒 + 𝝐 (1) 

where 𝑿𝝉  is the fixed component of the model with 
explanatory matrix 𝑿 and vector of fixed effects 𝝉 that were 
conformably partitioned to contain main effects for factors 
Year, Location and Genotype, two-way interaction effects for 
each pairwise combination of the factors and three-way 
interaction effects for all factors combined. The 𝒁𝑒𝒖𝑒  was a 
random component of the model where 𝒁𝑒  is an indicator 
matrix and 𝒖𝑒 are random effects conformably partitioned to 
contain effects to adequately account for differences between 
field reps in each environment as well as effects for 
differences between milling days for milling based traits. To 
provide necessary flexibility to the ME-LMM, the residual 
model 𝝐 was appropriately partitioned to 𝝐 = [𝝐1

𝑇 … 𝝐𝑡
𝑇]𝑇 where 

the residuals within the 𝑗th environment were assumed to be 
distributed 𝝐 ~ 𝑁(𝟎, 𝜎𝑗

2𝑰) . Identification of residual outliers 
was determined using the alternative outlier model (AOM) 
approach derived in [26] and outliers were then down-
weighted through the inclusion of separate indicator random 
covariates in (1).  

From the fitted ME-LMM, the Wald statistics analysis of 
variance table was calculated for the complete hierarchy of 
fixed effects and summarized with degrees of freedom for 
each of the effects. Additionally, the best linear unbiased 
estimates (BLUEs) of the Year × Location by Genotype effects 
were extracted from the ME-LMM and summarised for 
relative performance across the environments by subtracting 
the environment mean from the within environment 
Genotype BLUEs.  

Heritability 

To accurately determine trait heritabilities at each of the 
environments the non-pasta traits were analysed using an 
alternative multi-environment LMM of the form 

𝒚 = 𝑿∗𝝉∗ + 𝒁𝑒𝒖𝑒 + 𝒁𝑔𝒈 +  𝝐 (2) 

where terms differing from (1) include a reduced fixed 
component 𝑿∗𝝉∗  containing the explanatory matrix 𝑿∗  and 
vector of fixed effects 𝝉∗  conformably partitioned as main 
effects for factors Year and Location and their two-way 
interaction effects. The term 𝒁𝑔𝒈  was then a random 
component with indicator matrix 𝒁𝑔 and vector of effects 
𝒈 representing a set of multiplicative Location × Year × 
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Genotype random genetic effects. The effects are assumed to 
be distribution 𝒈 ~ 𝑁(𝟎, 𝑫 ⊗ 𝑰)  where 𝑫  is a 𝑡 × 𝑡  diagonal 
matrix with diagonal elements (𝜙1

2, … , 𝜙𝑡
2)representing the 𝑡 

genetic variances at each of the environments. Heritability 
within the 𝑗 th environment is then calculated using the 
formula from [27], namely  

𝐻𝑗
2 = 1 −

𝑃𝐸𝑉𝑎(�̃�𝑗, �̃�𝑗)

2𝜙𝑗
2  (3) 

where 𝑃𝐸𝑉𝑎(�̃�𝑗 , �̃�𝑗)  is the average pairwise prediction error 
variance of the best linear unbiased predictors (BLUPs) of 𝒈𝑗 
and 𝜙𝑗

2  is the genetic variance associated with the 𝑗 th 
environment.  

Stability analysis 

For non-pasta traits, the assessment of genotype 
performance and stability was determined using the FAST 
approach of Smith and Cullis [20] This required each of the 
traits to be analysed using an extension of the ME-LMM 
defined in (2). This extension involved a specification of the 
multiplicative Location × Year × Genotype random genetic 
effects to have distribution 𝒈 ~ 𝑁(𝟎, 𝚫 ⊗ 𝑰)  where 𝚫  is 
parameterized as an 𝑡 × 𝑡  unstructured covariance matrix 
with diagonal elements that reflect the genetic variation 
within each of the environments and off-diagonal elements 
that reflect the genetic relationships between each pair of 
environments [18]. As computational estimation of 𝚫  is 
difficult, a parsimonious approximation was sought by 
defining the genetic effects using a Factor Analytic (FAk) model 
[18,19]. Under this approximation, the genetic effect for line 𝑖 
in environment 𝑗 becomes 

𝑔𝑖𝑗 = 𝜆𝑗1𝑓𝑖1 + 𝜆𝑗2𝑓𝑖2 + ⋯ +  𝜆𝑗𝑘𝑓𝑖𝑘 +  𝜓𝑖𝑗  

       = 𝜆𝑗1𝑓𝑖1 + 𝑒𝑖𝑗   
(4) 

where 𝑓𝑖𝑟 is the 𝑟th hypothetical factor, 𝑟 = (1, … , 𝑘), and 𝜆𝑗𝑟 is 
the associated rotated loading in environment 𝑗 , 𝑗 = 1, … , 𝑡 
with environment specific genetic residual 𝜓𝑖𝑗 . To aid in 
interpretation of the approximate genetic effects Smith and 
Cullis [20] developed Factor Analytic Selection Tools or a FAST 
approach for to determining overall performance (OP) and 
stability (ST) of varieties across the environments. From the 
fitted multi-environment model the OP and ST for line 𝑖 was 
calculated using  

𝑂𝑃𝑖 =  
1

𝑡
∑ �̃�1𝑗𝑓𝑖1

𝑡
𝑗=1                 𝑆𝑇𝑖 =  √

1

𝑡
∑ �̃�𝑖𝑗

2𝑡
𝑗=1  (5) 
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Similar to principal component analysis, the OP uses a 
function of the first component of the FAk model to determine 
average overall performance of a variety across 
environments. The ST then uses the remaining 𝑘 − 1 
components of the FAk model to provide a numerical 
quantification of the stability of the variety across 
environments with lower values indicating greater stability. 

Computational 

All statistical models were computationally conducted 
using the flexible linear mixed modelling R package ASReml-
R V4 [28] and downloadable from 
https://www.vsni.co.uk/software/asreml-r. Model diagnostics 
were assessed using the R package ASExtras4 available from 
https://mmade.org/asextras4/.  

RESULTS 

Phenotypic Trait Summaries  

A phenotypic boxplot of the 18 traits shows the 
distribution in trait values across the 15 environments 
(Supplementary Figure S1) which provides a link between 
overall genotype performance to environmental differences. 
The length of each boxplot is a reflection of the phenotypic 
variability found for all the genotypes in each environment. A 
wide spread in the distribution of the boxes reflects a stronger 
influence by environment (Y × L) than a narrow distribution 
of boxes. GY tended to range 3–5 t/ha but two environments 
(2013-Tamworth and 2012-Tamworth) were associated with 
much lower yield than others while 2015-Narrabri and Breeza 
stood out with the highest yield. Generally, the different years 
tended to cluster except for 2013-Tamworth and 2012-
Tamworth. Possible reasons for this variation in yield are 
relatively poor soil conditions together with low rainfall 
during August–October in 2012 and 2013 as shown in the 
histograms. 2012 was the driest season for these months in 
contrast to 2015 which had significant rain in August. The 
August - September period coincides with stem elongation, 
flag leaf and ear emergence which are critical stages for yield 
formation. Grain filling occurs from mid/late September to the 
end of October. Good moisture conditions at these critical 
growth stages determine the grain size and grain yield 
(Supplementary Figure S5). The genotypes showed excellent 
TW values, mostly >80 kg/hL and reaching very high values 
>85 kg/hL. Values for TGW were high (>47 g) at two sites while 
2013-Tamworth had low values (for durum) with the median 

https://www.vsni.co.uk/software/asreml-r
https://mmade.org/asextras4/
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<35 g, probably a reflection of stress conditions at this site, as 
noted above, although this was not the situation at 2012-
Tamworth. In most environments HVK > 75 which would 
ensure sound grain while at 2015-Tamworth and 2015-
Narrabri, lower median values were achieved which would 
lead to a feed grade in the Australian grain receival standards. 
Generally, GP exceeded 12% (11% mb) which is important to 
achieve good overall performance except at 2015-Narrabri 
where the median protein was <11% which also had one of the 
highest GY. GY is negatively correlated to GP but 2013-
Tamworth with even lower GY had median GP ~13%. While 
grain hardness varied ~75–95 SKHI it was not associated with 
SY and Semo. Both SY and Semo are closely related and their 
distributions show a lot of similarity except in 2012 
(Supplementary Figure S1). Colour traits (L*, a*, b*, WI, BI) 
seem to show less variation across environments, especially 
for L* and a*. Dough properties represented by the MPT, RBD 
and GI plots show a quite even and narrow spread for MPT 
around 3–5 min and more variation in distribution for RBD 
and GI with most values >60. These boxplots do not provide 
information about the G × E interaction (see below).  

Effect of Genotype, Environment and Their Interaction 
on Grain Yield, Grain and Semolina Quality Traits 

In this study we have used location and year as 
environment. For grain yield and 16 quality traits, model (1) 
was fitted and showed that genotype (G), environment (L and 
Y) and genotype by environment (Y × G, L × G, Y × L × G) were 
significant for most grain, semolina and dough quality traits 
(Table 3). The extent of the effect varied as shown by the 
magnitude of the Wald statistic. Compared to Y and L, the 
statistics indicate there were strong G effects for TW, TGW, GP, 
a*, b*, WI, WG and GI. Whereas, environmental effects (Y and 
L) were greater for traits GY, HVK, SKHI, MY, SY. That all traits 
except L*, MPT and RBD had highly significant Y × L × G Wald 
statistics indicates multi environment trials are needed to 
evaluate most of these traits. For milling traits, while MY and 
SY had lower Wald statistics for G compared to Y and L, for 
Semo trait, the Wald statistics were higher for G than L but not 
Y. This might suggest better selection is possible using this 
trait. Heritability estimates (see below) suggest good genetic 
gain should be possible for MY, SY, Semo, GI, b*, a*, WI with 
other traits showing a lot more variability in heritability 
across environments. 
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Table 3. ANOVA Table of Wald statistics of fixed terms in each of the trait models for non-pasta traits. P-value significance of terms is represented by superscript 
stars (*** <0.001; ** <0.01; * <0.05). Bolded numerics in each column represent the highest order significant terms respecting marginality. Phenotypic trait 
minimums, maximums and averages are given at the bottom of the table.  

Effect GY TW TGW HVK GP SKHI MY SY Semo S-L* S-a* S-b* WI MPT RBD WG GI 

Y 
10313 
*** 

376.0 
*** 

36.50 
*** 

273.7 
*** 

116.4 
*** 

282.4 
*** 

1610 
*** 

753.6 
*** 

3044 
*** 

35.63 
*** 

183.4 
*** 

197.2 
*** 

195.2 
*** 

680.1 
*** 

248.2 
*** 

306.0 
*** 

285.5 
*** 

L 
6760  
*** 

225.0 
*** 

370.7 
*** 

617.4 
*** 

247.1 
*** 

99.14 
*** 

869.1 
*** 

629.4 
*** 

616.4 
*** 

318.9 
*** 

186.0 
*** 

600.8 
*** 

578.6 
*** 

234.0 
*** 

86.46 
*** 

197.9 
*** 

119.8 
*** 

G 
1863  
*** 

1374 
*** 

1027 
*** 

98.89 
*** 

809.7 
*** 

99.12 
*** 

660.7 
*** 

598.6 
*** 

2423 
*** 

255.7 
*** 

1418 
*** 

11238 
*** 

11090 
*** 

254.0 
*** 

190.1 
*** 

706.1 
*** 

1014 
*** 

Y × L 
1213.0 
*** 

284.3 
*** 

208.7 
*** 

57.22 
*** 

90.64 
*** 

334.7 
*** 

108.3 
*** 

77.55 
*** 

129.8 
*** 

14.97 
* 

31.32 
*** 

64.11 
*** 

52.40 
*** 

36.40 
*** 

50.60 
*** 

81.16 
*** 

105.5 
*** 

Y × G 
139.0 
*** 

186.0 
*** 

119.7 
*** 

128.3 
*** 

153.2 
*** 

166.0 
*** 

21.43 29.89 
85.19 
*** 

31.32 28.18 
107.1 
*** 

119.0 
*** 

76.47 
*** 

76.43 
*** 

33.92  
* 

125.4 
*** 

L × G 
1960  
*** 

336.7 
*** 

366.4 
*** 

130.8 
*** 

177.4 
*** 

235.8 
*** 

147.3 
*** 

137.7 
*** 

600.3 
*** 

84.64  
* 

89.95 
* 

355.4 
*** 

353.1 
*** 

127.2 
*** 82.27 

214.4 
*** 

263.4 
*** 

Y × L 
× G 

215.0 
*** 

172.3 
*** 

122.6 
*** 

177.7 
*** 

131.2 
*** 

179.3 
*** 

107.7 
*** 

129.7 
*** 

386.7 
*** 65.14 

98.70 
** 

306.0 
*** 

281.8 
*** 48.22 61.82 

131.8 
*** 

233.5 
*** 

Min 1.18 77.9 33.8 21.4 9.2 71.3 76.4 68.4 50.0 80.3 0.2 25.0 −64.0 2.21 7.14 16.7 41.3 

Max 6.01 86.7 54.7 99.3 17.4 96.5 82.2 73.6 63.5 84.7 0.29 36.2 −31.6 8.23 95.7 40.2 98.8 

Mean 4.03 82.5 42.4 82.0 13.0 87.8 80.0 71.5 57.2 82.2 0.24 31.2 −49.7 3.62 56.5 27.9 79.9 
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By expressing the best linear unbiased estimates (BLUEs) 
for each trait as deviations around the environment means 
(site x year) for all genotypes, it becomes very obvious which 
varieties show better than average performance and which 
are worse than average. Selected key traits are plotted in 
Figure 1. Where the desirable directions for traits is positive 
(GY, GP, WG, HVK, TW, TGW, SY, SEMO, L*, b*, MPT, GI) mean 
performances represented as blue bars while orange bars 
reflect a less desirable direction and where the magnitude of 
these responses is shown as the size of the bar. Note for RBD a 
lower value (orange bar) is desirable. The highest yielding 
genotypes consistently across the 15 environments were DBA 
Aurora and Hyperno and the lowest, EGA Bellaroi and 
Jandaroi. Other genotypes showed variable yield responses or 
very close to the environment mean (bar with little height) so 
are not outstanding for yield but whether they are retained 
depends on other grain quality attributes. For example, DBA 
Lillaroi while slightly above or equal to the mean yield (9/14 
environments) and below for 5 environments, was 
outstanding for TGW, SY and Semo (Figure 1 and 
Supplementary Figure S2).  

  
GY 

Figure 1. Plots showing the best linear unbiased estimator (BLUEs) values expressed as 
deviations around the environment (site x year) mean of 12 durum wheats across 15 
environments for non-pasta traits. For any given trait, muted blue bars indicate better than 
average performance of a variety and muted red bars indicates worse than average 
performance.  
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Inspecting the grain protein responses seems to rank the 
genotypes as the inverse of yield with the most consistently 
higher GP performers being EGA Bellaroi, Jandaroi, DBA 
Vittaroi and DBA Lillaroi and the lowest, DBA Aurora, 
Hyperno, Caparoi, 290491 and 280012. This is related to high 
protein grain having less starch (see discussion). The other 
genotypes were around average or below for yield and 
protein with 280012 having both below average yield and 
grain protein so would clearly be undesirable. WG followed a 
very similar trend to GP for the genotypes across 
environments (Supplementary Figure S1). There was less 
correspondence between GP and WG for DBA Vittaroi which 
gave higher than average GP but not for WG while 290564 
tended to be above site mean for WG and less for GP, 
indicating that it is important to measure both although in 
grain receival specifications, only grain protein is considered 
in Australia. While the main functional protein is gluten, 
farmers are paid on grain protein content. Achieving 
premium grade (DR1) requires a minimum of 13% protein in 
Australia hence the emphasis on having good genetic 
potential to achieve this level of protein in the grain.  

Average HVK achieved was 82% and genotypes giving 
consistently lower HVK than average were DBA Lillaroi (9/15 
sites), DBA Aurora (13/15) and Hyperno (7/15 sites) while those 
above site mean were DBA Vittaroi (11/15) and 280012 (14/15) 
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and 280115 (12/15) (Supplementary Figure S1). Genotypes 
with consistently well above average TGW across 
environments in order were DBA Lillaroi (14/15 sites), 240578 
(10/10) and Jandaroi (13/15) with DBA Lillaroi showing the 
greatest deviation from site means (Supplementary Figure 
S1). Those below site mean for TGW, in order of frequency and 
magnitude were Hyperno (13/15), 280115 (14/15), EGA Bellaroi 
(9/15), 280012 (13/15) and 290491 (10/15). These rankings were 
not the same for TW despite a significant correlation between 
TW and TGW (r = 0.40, p < 0.001, Supplementary Figure S4), 
with Caparoi showing higher TW more consistently. For 
milling quality two traits were measured, SY and Semo with 
poor performing genotype 290564 consistently below site 
average (10/10 sites) for both traits (Figure 1) For SY, DBA 
Lillaroi (13/15), Jandaroi (12/15) and 280012 (12/15) gave 
consistently superior milling performance to the other 
genotypes while for Semo, 280012 did not perform as well as 
DBA Lillaroi and Jandaroi with the greatest response from 
DBA Lillaroi (Figure 1). There were low correlations between 
both TW and TGW with SY and Semo (Supplementary Figure 
S4). Semo seems to be more discriminating of the two 
measures of milling yield separating the variation between 
genotypes better than SY. The lowest SY and Semo genotype 
was consistently 290564 although the TGW and TW data did 
not point to its low milling potential.  

Brightness is impacted by higher protein negatively and is 
affected more by E than G (Table 3). This was clear for L* 
showing the genotypes with below average GP had higher 
semolina L* while EGA Bellaroi (higher GP) was below the site 
mean at 13/15 sites (Supplementary Figure S2 and Figure 1). 
Jandaroi performed consistently below the site average with 
the lowest b* and less so for DBA Aurora, Caparoi and to a 
lesser extent EGA Bellaroi (Figure 1). All the other genotypes 
are more recent in the breeding program than the commercial 
varieties (EGA Bellaroi, Caparoi, DBA Aurora, Hyperno and 
Jandaroi) and would be expected to have superior b* due to 
continuous selection for higher semolina b* in the program as 
shown with the best being 280012 and DBA Vittaroi. Of note is 
a lot less variability between environments for 280012, 
280115, DBA Vittaroi and 290491 and above average b* is 
achieved in nearly all of these lines.  

Dough properties were assessed by mixograph (peak 
mixing time and resistance breakdown or dough stability), 
with longer MPT and lower RBD associated with stronger 
dough and gluten index, where values >70 are considered 
strong and >90 very strong dough. Dough properties are part 
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of the selection criteria in the DBA program and thus new 
varieties are superior to an older variety, EGA Bellaroi which 
has relatively weak dough as shown by consistently lower 
MPT, GI and higher RBD (meaning less stable dough) than site 
means (Figure 1 and Supplementary Figure S2). In contrast, 
Jandaroi consistently displays the highest GI (above mean at 
all 15 environments) and lower RBD (in this case lower or red 
coloured bars are better) with DBA Aurora close behind and 
less so, DBA Vittaroi (GI only). Undesirable low dough strength 
(GI) genotypes were 280115, 290564, 290491 (Figure 1).  

Heritability for Non-Pasta Traits 

Heritability estimates for non-pasta traits are represented 
in a boxplot (Figure 2). These give an indication of what the 
genetic variation is at an environment and are calculated for 
each environment hence a range in values is obtained. The 
narrower the range and higher the value, the stronger the G 
contribution to trait variation. Some parameters gave a 
narrow range in values with very high heritability such as b*, 
WI and GI above 0.7 indicating stronger G contribution to trait 
variation. Milling traits (MY, SY. Semo) and a* show more 
variability but still were mostly above 0.5. Other parameters 
showed a much wider range and interestingly WG showed a 
narrower range of variation (~0.3–0.9) compared with GP 
(~0.1–0.9). Selection is likely to be much more effective for a*, 
b*, WI, GI, milling and WG than other traits.  

 

Figure 2. Heritabilities of the non-pasta traits across the environments. A single dot represents 
a heritability within an environment with the bars representing the complete range across 
environments. 
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Table 4. ANOVA Table of Wald statistics of fixed terms in each of the trait models for pasta traits. P-value significance of terms is represented by superscript 
stars (*** <0.001; ** <0.01; * <0.05). Bolded numerics in each column represent the highest order significant terms respecting marginality. Phenotypic trait 
minimums, maximums and averages are given at the bottom of the table.  

Effect DOF DPL DPa DPb DPWI CPL CPa CPb CPWI CL WABS Firmness SPH SArea 

Y 1 
226.7 
*** 

164 
*** 

22.1 
*** 

125.6 
*** 

1.9 
36.1 
*** 

3.6 0.5 
55.6 
*** 

632  
*** 

0.0005 
77.2 
*** 

67.9 *** 

L 3 
13.2  
*** 

1.7 6.2 
12.8  
** 

13.2  
** 

1.9 1.7 4.2 
18.9 
*** 

54.5 
*** 

13.7  
** 

1.3 0.4 

G 5 8.2 
28.5 
*** 

71.2 
*** 

26.8 
*** 

28.1 
*** 

38.4 
*** 

243.2 
*** 

200.8 
*** 

24.1 
*** 

17.5 ** 42.6 *** 7.2 1.1 

Y × L 1 1.4 0.02 0.9 1.9 7.9** 0.7 3.7 3.6 3.9* 0.07 0.7 0.3 0.003 

Y × G 5 1.0 7.9 7.4 3.0 5.0 9.4 
20.1  
** 

18.9  
** 

5.0 10.4 6.7 1.7 2.9 

L × G 15 21.9 
32.6 
** 

14.6 18.3 
113.5 
*** 

29.9 * 25.3 * 
34.3  
** 

30.6 
** 

11.7 17.9 
27.9  

* 
32.7  
** 

Y × L × G 5 9.1 6.7 7.4 8.9 31.1 ** 7.7 9.4 9.2 9.8 9.8 7.5 7.6 6.3 

Min  69.9 −1.9 51.9 −84.5 76.9 −5.6 35.7 −72.0 5.4 158.7 660 22.7 10.8 

Max  70.7 −1.0 56.7 −78.2 78.0 −4.9 41.7 −57.8 5.9 164.5 729 24.0 11.1 

Mean  70.3 −1.4 54.6 −81.8 77.7 −5.3 39.0 −65.8 5.6 162.0 700 23.3 11.0 
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Effect of Genotype, Environment and Their Interaction 
on Pasta Quality Traits 

The pasta traits shows a quite narrow range in BLUEs for 
key traits showing the good overall pasta quality for all the 
genotypes (Table 4). After cooking the pasta appears brighter 
but loses some yellow pigment (lower b*). CL values were all 
excellent with a very narrow range while pasta firmness 
range is related to GP variation since these traits are 
correlated positively (Supplementary Figure S4). All 
genotypes had low and acceptable stickiness values. The Wald 
statistics for pasta traits shows only CPL having a significant Y 
× L × G interaction. Significant genotype effects were found for 
most color measures (DPL, CPL, DPb, CPb, DPWI, CPWI), CL, 
WABS and Firmness but either Y or L effects were also 
significant for these traits. While parameters with no 
significant G effect were stickiness and DPL.  

Overall Performance and Stability for Non-Pasta and 
Pasta Traits 

The overall performance (OP) and the stability (ST) of the 
genotypes is graphically displayed in Figure 3 of non-pasta 
traits. For any given trait, the plots provide a useful summary 
of the relative overall performance across all the 
environments (further to the right on the x-axis equals higher 
OP) and stability (closer to the origin on the y-axis means more 
stable performance for the trait). For convenience, a numerical 
summary of the OP values of the genotypes across all the non-
pasta traits is given in Supplementary Table S3 with a 
summarised set of ST values in Supplementary Table S1.  

Supplementary Table S3 highlights the best performing 
genotypes for each trait (bold numbers). DBA Lillaroi was well 
above average for TGW, SY and Semo that are linked to milling 
performance with average yield and above average GP and b* 
while 290564 was well below average for TGW, SY and Semo 
having consistently poor milling performance. Varieties with 
above average score (large, positive deviation ≥ 0.4) in 4 or 
more traits are Jandaroi, DBA Vittaroi, DBA Aurora and DBA 
Lillaroi while none achieved OP > 0.4 for GY. If high dough 
strength is desired, for example to use as a parent in crossing, 
Jandaroi and DBA Aurora would be preferred; for high yield 
use DBA Aurora or Hyperno; for high milling potential use 
DBA Lillaroi. A compromise would be needed on deciding 
which genotypes to progress to a released variety. Decisions 
on what genotypes to progress depend on the market 
requirements in the target production zone.  
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Grain yield         Grain protein 

       
Gluten index         S-b* 

Figure 3. Plots of overall performance (OP) versus stability (ST) for a selected set of non-pasta traits. Varieties on the far right of the plot can be viewed as the 
best overall performers across environments and varieties approaching zero on the y-axis have increased stability across environments. 
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The graphical summaries of OP and ST given in Figure 3 
are a convenient way to illustrate genotype relative 
performance and would assist breeders in deciding on the 
best genotype. Clearly decisions are based on multiple 
parameters that need to be balanced. The most important 
criteria for a breeder and grower is grain yield and it is clear 
that both DBA Aurora and Hyperno are the standout varieties 
for yield across the environments (Figure 3). Comparing these 
two for quality shows DBA Aurora is superior to Hyperno for 
SY, Semo, TGW, Semo b*, GI, MPT, RBD so would be preferred 
over Hyperno. However, the main issue for DBA Aurora for 
these 15 environments in NSW is the poor GP OP and tendency 
to higher screenings [29]. EGA Bellaroi was once a dominant 
variety grown in NSW is clearly now outclassed based on 
OP/stability for most parameters (GY, GP, GI, TGW, MPT, RBD). 

Stability (ST) of genotypes across all environments can be 
quantified with the most stable having values approaching 
zero (Supplementary Table S1). Some genotypes were quite 
stable across all the traits with low values such as 240578, 
280012 (except for GI) and 290564 while the most unstable 
with consistently high values for numerous traits are EGA 
Bellaroi, Hyperno, Jandaroi and DBA Vittaroi. The best 
genotypes for yield stability are Caparoi and 240578 and while 
OP for DBA Aurora and Hyperno were highest, their stability 
was worse than all other genotypes.  

Relative performance for six durum wheats grown at six 
environments and evaluated for a range of pasta quality tests 
are presented as plots for key traits (Supplementary Figure 
S3). This summary can be viewed as a proxy for overall 
performance (OP) of the varieties. For good quality pasta 
desirable values for all the traits are high values for colour 
(DPL, CPL, DPb, CPb, DPWI, CPWI), cooked Firmness, FArea 
and WABS which means the blue boxes are desirable while for 
traits DPa, CPa, CSTAB, CL, SPH, SArea1 and SArea2 lower 
values red boxes are desirable. Pasta colour is closely related 
to semolina colour, indeed there was a significant correlation 
between S-b* and DP-b* and CP-b* (Supplementary Figure 
S4) but only poor correlations between the corresponding L* 
and a* values. There is also a high correlation between DPb* 
and CPb* (r = 0.89, p < 0.001) which shows that much of the 
pigment is retained after cooking. Varieties with below site 
mean S-b*, like Jandaroi, Caparoi and DBA Aurora also had 
lower DPb* and CPb* performance. Pasta appearance is 
affected by not just b* but also L* and a* so that although EGA 
Bellaroi achieved above average DPb*, the DPa* was redder 
making the pasta appear duller to the naked eye. Pasta texture 
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was assessed by cooked firmness, overcooking tolerance and 
cooked stickiness. DBA Lillaroi, EGA Bellaroi, and Jandaroi 
tended to higher firmness while other genotypes showed 
more variability. Overcooking tolerance relates to firmness 
after 10 min overcooking, with a small reduction being 
desirable. Hence orange bars are preferred. Genotypes with 
higher firmness (and GP) like EGA Bellaroi and Jandaroi had 
higher colour stability (CSTAB) and DBA Aurora with lower 
firmness also had better CSTAB showing the traits were not 
correlated. However, there was very little variation in CSTAB 
across genotypes with no significant differences in means. 
There were no clear consistent trend in stickiness across the 
genotypes showing variable responses across environments. 
But predicted values show all genotypes had acceptable 
stickiness. DBA Aurora consistently achieved higher levels 
than the overall mean across environments while 290491 
tended to lower values.  

The OP values for the pasta traits are found in Table 5 and 
ST in Supplementary Table S2. The best performing 
genotypes for each trait are bolded. Values with a higher DPL, 
DPb, CPL, CPb, WABS, Firmness, FArea and traits with lower 
values for DPa, CPa, DPWI, CPWI, CSTAB, CL, SPH, SArea1 and 
SArea2 are desirable. The genotype with the best colour 
parameters was 290491 followed by DBA Aurora, which also 
produced the least firmness and highest SPH. For ST values 
close to zero represent the greatest stability across the test 
environments. Caparoi showed the best ST for most of the 
colour traits except CSTAB while Jandaroi had the least ST. 
EGA Bellaroi had the best ST for CL and stickiness while 
Jandaroi was best for firmness ST. 

Trait Correlations for Non-Pasta and Pasta Traits 

The BLUEs values for all traits were subject to pairwise 
correlation analysis and results are shown as a pictogram 
(Supplementary Figure S4). A strong positive correlation (r > 
0.6) was obtained between GP and WG and negative 
correlations between GI and RBD/WG; MPT and RBD/WG/HVK; 
L* and GP; WG and SY although any r > 0.2 was significant, p 
< 0.01 but in practice do not explain much of the variation.  
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Table 5. For all pasta traits, the relative performance of BLUEs averaged across environments. This summary can be viewed as a proxy for overall 
performance (OP) of the varieties. Bold values represent the best overall performing genotype for each trait analysis. 

Genotype DPL DPa DPb DPWI CPL CPa CPb CPWI CSTAB CL WABS Firmness FArea SPH SArea1 

EGA Bellaroi 0.094 0.537 1.195 −1.676 0.093 0.253 0.803 −1.776 0.350 −0.014 −1.701 29.046 0.046 −0.219 0.009 
Caparoi −0.145 0.004 −0.935 1.523 0.315 −0.025 −0.578 0.811 −0.137 0.012 1.678 −9.875 −0.027 −0.425 −0.014 
DBA Aurora 0.225 −0.507 −0.454 0.052 0.179 −0.308 −0.461 0.723 −0.033 0.348 2.164 −40.091 −0.063 0.668 −0.006 
DBA Lillaroi −0.288 −0.124 0.782 −0.437 0.021 −0.092 0.905 −1.542 −0.035 −0.090 −0.959 16.484 0.034 0.158 −0.001 
290491 0.063 0.076 2.106 −2.886 0.177 −0.267 2.636 −6.179 −0.290 −0.198 −0.950 −6.697 −0.007 −0.240 0.013 
Jandaroi 0.052 0.015 −2.695 3.425 −0.785 0.440 −3.305 7.963 0.145 −0.058 −0.232 11.133 0.017 0.058 −0.001 
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DISCUSSION 

To date there have been no reports of a G × E study for 
durum wheat quality traits in the Australian dryland 
production environment. We have used modern statistical 
approaches to analyse data obtained from a G × E study 
consisting of 15 environments. While the genotypes tested 
may become less relevant as breeders release new varieties, 
the approach used in this study will provide durum wheat 
breeders with vital information on trait heritability as well as 
tools to measure genotype performance and stability across 
environments.  

Effect of Genotype, Environment and Their Interaction, 
Stability and Overall Performance on Grain Yield and 
Non-Pasta Quality Traits 

Phenotype is a product of the genotype, environmental 
influences (rainfall, temperature, abiotic and biotic factors, 
soil conditions and management practices) and the 
interaction of these two factors (G × E). In breeding the aim is 
to develop better genotypes in terms of improved trait(s) 
while also ensuring good stability of performance across 
multiple environmental conditions. G × E studies are 
important in evaluating cultivar adaptation, selecting parents 
for crossing, and developing improved genotypes. If the 
ranking of genotypes differs between environments, 
identification of superior breeding genotypes is hampered 
because values are affected more by environmental variation 
than genetic differences. Such knowledge has the potential to 
reduce the number of test environments required to provide 
assurance a genotype is performing well across the range of 
environments where durum wheat can be grown in NSW 
relative to control varieties with long term demonstrated 
performance. To provide detailed interpretation of the G × E 
interaction effects for each of the traits we have used a 
combination of two highly structured multi-environment 
linear mixed models (ME-LMM). For pasta and non-pasta 
traits, we initially modelled the G × E interaction as a fixed 
component in the ME-LMM to provide accurate hypothesis 
testing as well as to provide a detailed summary of the G × E 
effects through relative variety performance between and 
within environments. For non-pasta traits a second ME-LMM 
was then fitted that used a Factor Analytic model for the G × E 
interaction effects [18,19], allowing a newly developed FAST 
approach [18] for accurately determining variety stability 
across environments.  



 
Crop Breeding, Genetics and Genomics 28 of 39 

Crop Breed Genet Genom. 2020;2(4):e200018. https://doi.org/10.20900/cbgg20200018 

In our G × E study, we measured key traits used in the 
Durum Breeding Australia (DBA) program on 12 genotypes 
representing commercial and advanced breeding genotypes. 
All the phenotypic responses were recorded (Supplementary 
Figure S1) which shows the variability obtained in this study 
across the 15 environments. Some traits show little variation 
(narrow box plots) like BI, MPT and L* while others much 
more. Environmental conditions like rainfall, temperature 
during grain filling and at maturity together with the 
genotype interaction underly the phenotypic variation 
observed. The ANOVA tables showed that almost all non-pasta 
traits had significant G × E variation (Table 3). Also, many 
traits were influenced more by G than Y × L (TW, TGW, GP, a*, 
b*, WI, WG, GI). This is reflected in the heritability estimates 
with many showing a wide range although GI, WI, b*, a* Semo, 
SY, MY have a narrower range with values 0.45–0.95 (Figure 
2). While TW, TGW, GP and WG all showed a strong genotype 
effect (Table 3), their heritabilities were still highly variable 
(Figure 2) indicating significant environmental effects in 
some environments whilst genetic effects dominate these 
traits in an overall sense. This shows a strong potential for 
genetic gain through breeding and selection for these traits 
(GI, WI, b*, a* Semo, SY, MY). Selection for these traits in early 
generations could be effective provided test methods suitable 
for small grain samples with large sample throughput are 
available. Other studies in durum wheat show more influence 
of environment on GP, WG, yellowness, HVK, TW and TGW 
but agree with our finding of high E variation for GY and HVK 
[11,30]. For GP heritability, estimates have been reported as 
low to moderate [31,32] while others [30,33,34] obtained 
values ~75%, (no range provided). Heritability and G × E 
effects on durum yield and quality traits will vary between 
studies due to use of different genetic material, environments 
and methods of statistical analysis used [35]. What matters to 
the breeders is the use of environments that are 
representative of the durum production zones. Results from 
this study indicate that genetic gains in GI, WI, b*, a* Semo, SY, 
MY will be possible.  

In a study of 23 durum wheats grown in Ethiopia in 2010 
it was noted that TGW was a good predictor of GY with TGW 
having a high heritability of 81% [36]. However, our data 
shows very low correlation (Supplementary Figure S4) 
between these traits although TGW showed high G 
contribution and variable but reasonable heritability (Table 3 
and Figure 2). GY is strongly related to grain number [37,38]. 
Typically yield and grain protein are negatively correlated 
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due to the dilution effect on grain being larger with higher 
yield (grain with more carbohydrate), so proportionately has 
less protein [39]. The correlation between GY and GP was r = 
−0.43, p < 0.05 following the expected trend. WG and GP are 
highly correlated (r = 0.93, p < 0.001 (Supplementary Figure 
S4) because ~80–85% of grain protein in wheat is gluten [40], 
hence WG was also negatively correlated with GY (r = −0.45). 
Generally, genotypes with high OP for GY were lower for GP 
(Figure 3, Supplementary Table S3) and those about the 
origin in Figure 3 (performance vs stability plots) were as 
expected, between these extremes. Given the importance in 
achieving GP for grading purposes (13+%, 11%mb in 
Australia), clearly a compromise on GY in favour of GP is 
needed.  

Grain vitreousness is another important commercial 
trading measure with high levels of vitreosity >80% leading to 
good semolina yield and pasta of good appearance [41]. 
Overall HVK mean was >80% except at 2015-Tamworth and 
2015-Narrabri possibly due to weather conditions such as high 
rainfall during grain filling, although 2015-Narrabri also had 
lowest GP and both traits are negatively correlated (r = −0.31, 
p < 0.01). Rainfall events can lead to reduced HVK [42]. There 
were high levels of rainfall in November at these 
environments (Supplementary Figure S5) although similar 
rainfall was observed in other environments so other factors 
are important. GP was lowest at 2015-Narrabri which would 
reduce HVK at this site. Vitreous kernels are characterized by 
a natural translucent colouring or “glassy” appearance. 
Vitreosity is linked to protein content [43] which affects grain 
structure with higher protein creating a more compact grain 
structure of starch granules surrounded by a gluten matrix 
with fewer air spaces resulting in a vitreous kernel 
appearance. However, HVK is highly affected by 
environmental conditions during grain development 
(rainfall) which explains the high Wald values for Y, L and Y × 
L for HVK. Other studies confirm the greater impact of 
environment than genotype on this grain parameter 
[5,11,30,44]. DBA Lillaroi showed a more frequent lower HVK 
than the overall mean across 9/15 environments 
(Supplementary Figure S2), indicating that should rainfall 
occur near harvest, this variety could be more susceptible to 
lower HVK and consequent downgrading and price penalty. 
However, since the release of DBA Lillaroi grower experience 
has been positive with no instances of issues with low HVK 
reported to date.  
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Grain density and weight affects important grain 
measures, TW and TGW which are related to semolina yield 
with TW thought to be a better indicator in durum [45]. DBA 
Lillaroi gave consistently the highest semolina yield measured 
as SY or Semo and this is more likely related to the very large 
grain size this genotype produced (highest and most 
consistent TGW across environments) even though TW data 
does not suggest a good milling potential. It seems under 
Australian conditions, TGW is a better predictor of milling 
yield than TW as the high TGW performers, DBA Lillaroi and 
Jandaroi were also the highest for milling yield (SY vs TGW, r 
= 0.46 compared to SY vs TW, r = 0.28, Supplementary Figure 
S4). In contrast, 290564 was consistently lower for SY and 
Semo which were not obvious from the good TW and TGW 
(Figure 3). This suggests that other factors are important in 
determining milling potential [1] and that test milling is 
critical for breeders to improve milling yield. DBA Lillaroi was 
noted above as having good GP and acceptable GY but clearly 
has outstanding milling performance and these factors were 
instrumental in its release. DBA Lillaroi has enjoyed very high 
adoption upon its release representing ~41% of durum silo 
receivals in NSW [46].  

Colour is an important measure for the appearance and 
consumer acceptability of pasta which should be bright, 
yellow and not red with the three key measures being L*, a* 
and b* used to assess this. Semolina yellowness is commonly 
used in breeding programs to select for pasta yellowness 
without the expensive and time consuming work to prepare 
pasta. Yellowness of semolina (S-b*) is a good predictor of 
pasta b* but not always [47]. Our study using a reduced set of 
samples for pasta making showed a high correlation between 
S-b* and both DPb* and CPb* (r = 0.90 and 0.95, p < 0.001, 
respectively). Since b* has high heritability (Figure 2), 
breeders have been successful in selecting for increased 
semolina yellowness world-wide [48]. Breeding for increased 
semolina b* has been a key quality target for DBA for over 25 
years and this is evident in the more recently developed 
genotypes (DBA Lillaroi, 240578, 280012, 280113, DBA Vittaroi) 
compared with the older varieties like EGA Bellaroi, Jandaroi, 
Caparoi, (released in 2003, 2007, 2008, respectively) as shown 
by their higher OP for semo b* (Figure 3). Interestingly, all 
genotypes except Hyperno showed good ST values for S-b*, 
showing that in Hyperno colour expression is partly 
dependent more on E than for the other genotypes in these 
environments.  
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Dough strength is thought to be important to pasta quality 
especially when protein is below industry recommended 
levels of 12–13% grain protein content [25]. Generally, durum 
wheat high in protein and with strong gluten ensures pasta is 
firm, retains its al dente texture with overcooking and is non-
sticky with excellent culinary quality [49]. Dough properties 
were assessed by mixograph (peak mixing time and resistance 
breakdown or dough stability, with longer MPT and lower 
RBD associated with stronger dough) and gluten index (where 
values >70 are considered strong and >90 very strong) [25,50]. 
The GI method clearly differentiated genotypes into very 
strong (>90) to moderate strength (70–80). MPT seemed less 
discriminating with a narrower range in values but still with 
significant genotype differences. GI was significantly 
positively correlated with MPT (r = 0.50, p < 0.001) and 
negatively with RBD (r = −0.53) (Supplementary Figure S4). 
Heritability estimates shows that GI has a higher heritability 
than MPT and RBD (Figure 2) with higher genotypic effects 
(Table 3). Selection for increasing gluten strength is then best 
done using the GI measurement. The OP and ST for GI was 
highest for Jandaroi and DBA Aurora. The lowest OP was for 
EGA Bellaroi but ST was worse for 280012 (Figure 3, 
Supplementary Table S1). Since its release (2007), Jandaroi 
has consistently shown high GI values and EGA Bellaroi low 
values in the DBA program (unpublished data) consistent with 
this study. Interestingly, there was a small negative 
correlation between GP and GI. Late sown durum wheat is 
associated with increased protein content and GI [51,52] due 
to higher glutenin to gliadin ratio. However, higher grain 
protein may result in higher gliadin to glutenin ratio, which 
can reduce GI [53,54].  

Effect of Genotype, Environment and Their Interaction, 
Stability and Overall Performance on Pasta Quality Traits 

Many studies have not included end products in their G × 
E studies, considered by many as the ultimate way to assess 
wheat quality. Key pasta traits are a bright yellow colour with 
minimal colour loss after cooking. Cooked pasta should have 
a firm texture and retain its al dente even with overcooking 
and with low stickiness, minimal amounts of solids lost into 
the cooking water (low cooking loss) with a 2–3 fold increase 
in weight from water uptake (water absorption) to ensure a 
good mouthfeel [49].  

Colour selection would be based on uncooked, dry pasta 
(DPL, DPa, DPb) and genotypes with the best OP for DPb were 
290491, DBA Lillaroi and EGA Bellaroi (Supplementary 
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Figure S3). Of these, only the first two had above average OP 
for S-b* (Figure 3) reflecting the moderate correlation 
between these measures, as described previously. Genotypes 
showing poor OP for S-b* were Jandaroi, DBA Aurora, Caparoi 
and EGA Bellaroi (Figure 3) and these also performed below 
average for DPb except EGA Bellaroi. CPb followed a similar 
trend to DPb reflecting similar loss of yellow pigment during 
the cooking process (colour stability) between genotypes with 
EGA Bellaroi being slightly better (Supplementary Figure 
S3). Cooked pasta firmness is an important trait and generally 
firmer is better although this is influenced by GP. Firmness 
was correlated with grain protein (r = 0.587, p < 0.001). 
Genotypes with higher OP for GP (EGA Bellaroi, Jandaroi and 
DBA Lillaroi) tended to also have higher firmness 
(Supplementary Figure S3) showing that selection for this 
trait depends heavily on GP achieved and needs to be 
considered. Tolerance to overcooking (10 min after optimum) 
is important since this is commonly done by consumers so 
retaining the al dente mouthfeel is important. Absolute values 
show all genotypes were good although those with higher 
firmness tended to have better tolerance to overcooking. 
There were minimal differences in the mean BLUEs for 
stickiness peak height where lower values are desirable 
ranging from 22.7 to 24.0 g (data not shown). Stickiness arises 
during the cooking process as the pasta releases exudates 
from the starch granule gelatinization and amylose is thought 
to be mostly responsible [55]. These difference are not 
considered significant in practice, despite variation across 
environments (Supplementary Figure S3). The same was the 
case for CL where again, a narrow range in mean BLUEs of 
5.4–5.9% was observed. The solids lost into the cooking water 
should be minimal with good pasta having up to 7–8% 
considered acceptable [56]. Overall, the pasta data shows all 
genotypes produced an acceptable product but taking into 
account all measured traits, the better genotypes were DBA 
Lillaroi and 290491. It should be noted that all these trait 
measures do not assess the sensory acceptability which covers 
visual appearance, taste, aroma and texture. Subjective 
assessment shows that EGA Bellaroi produces a duller pasta 
than DBA Lillaroi and DBA Aurora. The bright yellow pasta 
colour of DBA Lillaroi has been appreciated by the Australian 
pasta makers and it has met their requirements for a brighter 
yellow colour and opened new market opportunities [45]. 
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CONCLUSION 

This G × E study presents a comprehensive analysis of 
durum varieties and breeders advanced genotypes for grain 
yield, grain, semolina, dough and pasta making quality in the 
Australian dryland environment. A summary of the overall 
performance and stability of the genotypes is presented to 
assist identification of the best genotypes for each trait. A 
breeder needs to ideally combine several commercially 
important traits into one genotype and the emphasis given 
depends on the intended use. In the DBA program emphasis is 
on high yield and grain quality meeting the requirements of 
the value chain users (millers, pasta makers, marketers and 
consumers). While nearly all grain and semolina traits 
showed significant G × E only one pasta trait did (CPL). For 
non-pasta traits, good heritability was observed for traits such 
as milling yields, semolina b*, semolina whiteness and gluten 
index. Selection for these traits will enable genetic 
improvements. The OP vs stability plots allow at a glance the 
easy identification of superior genotypes having both a high 
OP and ST for as many traits as possible but usually a 
compromise is needed. However, this study ignored other 
trait data that is important for variety release that was beyond 
the scope of the study e.g., screenings, disease ratings, lodging, 
maturity etc. The limitations of our study were that there was 
no replication of the milling in individual trials and the small 
number of samples evaluated for pasta making quality, both 
due to resource limitations. However, this is the first detailed 
G × E study conducted on durum wheat in Australia. Overall, 
multi-environment data allows the heritability of traits to be 
determined and genotypes overall performance and stability 
allowing more quantitative comparisons. This will ensure 
better decision making about genotypes to develop and will 
achieve better productivity for the durum industry. We would 
recommend for industry the following genotypes based on 
this study that combine high performance and stability for 
both yield and many technological quality traits suited to the 
dryland durum growing regions of northern NSW, Australia: 
DBA Lillaroi and breeding line 240578. Furthermore, DBA 
Lillaroi possesses a bright semolina and pasta colour which is 
attractive to the durum milling and pasta making industry.  

SUPPLEMENTARY MATERIALS 

The following supplementary materials are available 
online at https://doi.org/10.20900/cbgg20200018: 
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Supplementary Figure S1: Boxplot of trait BLUEs showing 
variation for non-pasta traits across environments. Boxplots 
show the median and interquartile range of trial data. 

Supplementary Figure S2: Selected plots showing the best 
linear unbiased estimator (BLUEs) values expressed as 
deviations around the environment (site x year) mean of 12 
durum wheats across 15 environments for non-pasta traits. 
For any given trait, muted blue bars indicate better than 
average performance of a variety and muted red bars 
indicates worse than average performance except for RBD 
which is the reverse.  

Supplementary Figure S3: Plots showing the BLUEs values 
expressed as deviations around the site mean of 6 durum 
wheats across 6 environments for selected pasta quality traits.  

Supplementary Figure S4: Pairwise correlation plot for 
non-pasta traits between BLUEs of the traits. 

Supplementary Figure S5: Rainfall and 
minimum/maximum temperature data from all the 
environments used in the study.  

Supplementary Table S1: Numerical stability of genotypes 
(ST) across all environments for a selected set of non-pasta 
traits. For each trait, values were extracted directly from the 
stability analysis and scaled by the standard deviation across 
the genotypes for more suitable comparison. Genotypes with 
values approaching zero exhibit greater stability across 
environments. Bold values represent the most stable genotype 
for each trait analysis. 

Supplementary Table S2: For all pasta traits, a summary of 
mean squared deviation of BLUEs from their relative average 
performance across environments. This summary can be 
viewed as a proxy for variety stability (ST).  

Supplementary Table S3: Numerical overall performance 
of genotypes (OP) across all environments for a selected set of 
non-pasta traits. For each trait, OP values were extracted 
directly from the stability analysis. Bold values represent the 
best overall performing genotype for each trait analysis. 
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